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Abstract

We show how to construct a variety of “trapdoor” cryptographic tools assuming the worst-case
hardness of standard lattice problems (such as approximating the length of the shortest nonzero vector
to within certain polynomial factors). Our contributions include a new notion of preimage sampleable
functions, simple and efficient “hash-and-sign” digital signature schemes, and identity-based encryption.

A core technical component of our constructions is an efficient algorithm that, given a basis of an
arbitrary lattice, samples lattice points from a discrete Gaussian probability distribution whose standard
deviation is essentially the length of the longest Gram-Schmidt vector of the basis. A crucial security
property is that the output distribution of the algorithm is oblivious to the particular geometry of the given
basis.
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1 Introduction

Ever since the seminal work of Ajtai [Ajt96] connecting the average-case complexity of lattice problems
to their complexity in the worst case, there has been an intriguing and fruitful effort to base cryptography
(which requires security for random keys) on worst-case lattice assumptions. In addition to their unique
theoretical niche, lattice-based schemes enjoy many potential advantages: their asymptotic efficiency and
conceptual simplicity (usually requiring only linear operations on small integers); their resistance so far to
cryptanalysis by quantum algorithms (as opposed to schemes based on factoring or discrete log); and the
guarantee that their random instances are “as hard as possible.”

Until very recently, the known constructions of such primitives were limited mainly to one-way and
collision-resistant hash functions [Ajt96, GGH96, CN97, Mic04, MR07] and public-key encryption [AD97,
Reg04b, Reg05]. In particular, it has been a longstanding open problem to give a “direct” construction
of digital signatures having the simplicity and efficiency of other lattice-based primitives, even in the
random oracle model.1 The early “GGH” signature proposal of Goldreich, Goldwasser, and Halevi [GGH97]
was directly related to a certain lattice problem, but it lacked a security proof, and recently, Nguyen and
Regev [NR06] showed how to recover the entire secret key (or its equivalent) from a transcript of signatures.

Moreover, despite some recent advances in lattice-based cryptography (e.g., [PW08, LM08]), many other
important cryptographic notions (that were long ago attained under other number-theoretic assumptions) still
remain unrealized under lattice assumptions.

1.1 Overview of Results and Techniques

Our main thesis in this work is that lattices admit natural and innate “trapdoors” that have a number of useful
cryptographic applications. Going at least as far back as the GGH proposal, it was intuitively believed that a
short basis of a lattice (i.e., a basis in which all the vectors are relatively short) could serve as such a trapdoor.
Our central contribution is in showing how to use a short basis in a theoretically sound and secure way.

As a basic tool, we first construct a collection of trapdoor functions having some special properties. The
functions are surjective and many-to-one, (i.e., every output value has several preimages), and the trapdoor
inversion algorithm samples from among all the preimages under an appropriate distribution. Building upon
this foundation, we then give direct lattice-based constructions of richer cryptographic notions, such as
signature schemes and identity-based encryption.

A core component in all of our constructions is an efficient algorithm that samples from a so-called
discrete Gaussian probability distribution over an arbitrary lattice, given an appropriate basis. The sampling
algorithm also enables simpler and (slightly) tighter worst-case/average-case connections for lattice problems,
and may have additional applications in complexity theory and cryptography.

1.1.1 Gaussian Sampling Algorithm

Because it is the foundation of our cryptographic results, we start by summarizing the Gaussian sampler. The
distribution from which it samples is called a discrete Gaussian over an n-dimensional lattice Λ.2 Under
such a distribution DΛ,s,c, the probability of each vector v ∈ Λ is proportional to exp(−π‖v − c‖2/s2),

1Indirect (but inefficient) constructions are of course possible by a generic transformation from universal one-way hash
functions [NY89], or (in the random oracle model) by applying the Fiat-Shamir heuristic [FS86] to lattice-based identification
schemes [MV03].

2An n-dimensional lattice is the set of all integer linear combinations c1b1 + · · ·+ cnbn (where each ci ∈ Z) of some linearly
independent basis vectors b1, . . . ,bn ∈ Rn.
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where c ∈ Rn and s > 0 are parameters of the distribution akin to its mean and standard deviation,
respectively. Discrete Gaussians over lattices are standard in mathematics (see, e.g., [Ban93, Ban95]), and
have recently proved to be an exceedingly useful analytical tool in studying the computational complexity of
lattice problems [AR03, AR05, Pei07], particularly their worst-case/average-case connections (e.g., [Reg04b,
MR07, Reg05]).

The sampling algorithm takes as input the desired parameters c ∈ Rn and s > 0, and an arbitrary basis
B = {b1, . . . ,bn} of the lattice Λ. As long as s exceeds the lengths (times a small extra factor) of all the
Gram-Schmidt3 vectors b̃i of the basis B, the output of the algorithm is a lattice vector distributed according
to DΛ,s,c. In other words, the “width” of the sampled Gaussian is determined by the quality of the input basis.
As an alternate perspective, one can view the sampler as a randomized decoder that outputs a lattice vector
relatively close to c. A key property is that the output distribution depends only on the maximal length of B’s
Gram-Schmidt vectors; it is otherwise oblivious to B’s particular geometry.

The sampling algorithm itself is actually a simple randomized variant of Babai’s “nearest-plane” al-
gorithm [Bab86], which was originally proposed by Klein [Kle00] in another context (see Section 1.2 for
details). Instead of determinstically rounding to the nearest plane in each iteration, the algorithm simply
chooses a plane with a probability determined by its distance from the target point. While the algorithm itself
is not new, we present a (nearly) exact analysis of its output distribution (for different parameters than were
considered in [Kle00]) using a lattice quantity called the smoothing parameter, as defined by Micciancio
and Regev [MR07]. As a related contribution, we also bound the smoothing parameter in terms of a quantity
that we call the Gram-Schmidt minimum; this improves upon a prior bound involving the nth successive
minimum [MR07].

As an application of independent interest, we also use the sampling algorithm to give conceptually simpler
and slightly tighter worst-case to average-case reductions for lattice problems, building on prior Gaussian
techniques [MR07]. Our reduction avoids a “rounding” step that arises when using continuous Gaussians,
which introduces some looseness in the analysis. While we obtain only modest quantitative improvements,
the new reduction and its analysis are technically simpler.

1.1.2 Cryptographic Constructions

Our cryptographic results are summarized as follows (we describe each in more detail below):

• We propose a new abstraction called preimage sampleable (trapdoor) functions (PSFs), and present
constructions whose security is based on the presumed worst-case hardness of standard lattice problems
(and whose efficiency is comparable to prior lattice-based cryptographic functions).

• We show that our new abstraction can securely serve as a black-box replacement for trapdoor permuta-
tions in several prior signature schemes, including those that follow the “hash-and-sign” paradigm (in
the random oracle model) [BR93, BR96, Cor02], and a construction of Bellare and Micali (in the plain
model) [BM92]. In particular, we obtain simple and efficient “hash and sign” lattice-based signatures,
in the random oracle model.

• We construct an asymptotically efficient identity-based cryptosystem (in the random oracle model, or
under an “interactive” assumption) based on learning with errors (LWE), a bounded-distance decoding
problem on lattices that generalizes the well-known “learning parity with noise” problem. As shown by

3The Gram-Schmidt vectors are defined iteratively: b̃1 = b1, and b̃i is the component of bi orthogonal to span(b1, . . . ,bi−1)
for i = 2, . . . , n. In particular, note that ‖b̃i‖ ≤ ‖bi‖.
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Regev [Reg05], the average-case hardness of LWE can be based on the presumed worst-case hardness
of standard lattice problems for quantum algorithms.

• We present (unconditionally) some trapdoor techniques for the LWE problem and cryptosystems based
upon it. A concurrent work [PVW07] applies these techniques to instantiate a general framework for
efficient and universally composable oblivious transfer.

The worst-case problems underlying our cryptographic schemes are to approximate the shortest inde-
pendent vectors problem SIVP or the shortest vector problem GapSVP (in its decision version) to within
small polynomial (in the dimension n) factors. Known classical (and quantum) algorithms for these problems
require time and space that are exponential in n [AKS01], and known polynomial-time algorithms obtain
approximation factors that are essentially exponential in n [LLL82, Sch87].

In all of our constructions, we need to generate a “hard” public basis B (chosen at random from some
appropriate distribution) of some lattice Λ, together with a “good” trapdoor basis T of Λ whose Gram-
Schmidt vectors are relatively short (this is used as the advice for the sampling algorithm). Although our
techniques are entirely orthogonal to the method for generating such bases, our preferred approach comes
from a lesser-known paper of Ajtai [Ajt99], which describes a way to generate such bases so that the random
public basis has worst-case hardness. As far as we know, our results are the first applications of Ajtai’s
generator in cryptography or otherwise.

Preimage sampleable (trapdoor) functions. The basic object underlying our higher-level cryptographic
tools is a collection of special one-way (and even collision-resistant) trapdoor functions, which we call
preimage sampleable functions (PSFs). Intuitively, evaluating a public function f = fB from the collection
(where B is the public basis for Λ) on a random input corresponds to choosing a lattice point v ∈ Λ
“uniformly at random” and perturbing it by some relatively short error term e, yielding a point y = v + e.4

Inverting y corresponds to decoding it to any sufficiently nearby lattice point v′ ∈ Λ, though not necessarily
the original v; the error term is large enough that many preimages exist. Given the trapdoor basis T, it is
easy to decode y using the sampling algorithm. But given only the public basis B, the decoding problem is
hard (on the average, for the particular distribution of B and y).

Our trapdoor functions have two crucial properties for security in cryptographic applications. First, the
random input (the error term e) is drawn from a relatively narrow Gaussian distribution, and under this
distribution, the output y is statistically close to uniform over the range. Second, the trapdoor inversion
algorithm does not just find an arbitrary preimage of y, but actually samples from among all its preimages
under the appropriate conditional distribution, i.e., a discrete Gaussian over Λ. In other words, the inverter
samples an input e from the Gaussian input distribution, conditioned on the event f(e) = y.

The properties described above imply that there are two (nearly) equivalent ways of choosing a pair
(e,y = f(e)): either choose e from the input distribution and compute y = f(e), or choose y uniformly
at random and sample e from f−1(y). As we shall see, these properties make PSFs “as good as” trapdoor
permutations in certain applications.

Signature schemes. The cryptographic literature contains several existentially unforgeable digital signature
schemes based on trapdoor permutations. Using the “hash-and-sign paradigm” [DH76, RSA78] in the
random oracle model, we have the simple and efficient full-domain hash (FDH) scheme [BR93] and its
variants [BR96, Cor02]. In the plain model, there is a tree-based scheme of Bellare and Micali [BM92] that,

4Of course, as an infinite set, the lattice Λ cannot support a uniform distribution. Formally, f applies the standard technique of
reducing a random error term e modulo the public basis B.
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while somewhat inefficient, has significantly shorter signatures than generic constructions based on one-way
or universal one-way functions [NY89, Rom90].

We show that all of the above permutation-based signature schemes can also be instantiated using (as
a black box) any collection of preimage sampleable functions, and retain their security analyses in their
respective models (though subtleties can arise when signing the same message more than once). In fact, by
relying on collision-resistant PSFs, we are able to give tight security reductions for FDH (and its variants),
whereas reductions for plain FDH based on trapdoor permutations are inherently loose [Cor02]. Similarly,
we also give a much tighter reduction for the scheme of Bellare and Micali.

Concretely, our hash-and-sign schemes represent a more theoretically sound way of instantiating the
original (but insecure) GGH proposal [GGH97] and its variants, e.g., NTRUSign [HHGP+03]. Informally, in
these schemes a message is hashed to a point in some region of space, and its signature is essentially a nearby
lattice point, which is found using a “good” secret basis. Our schemes have two main differences: first, they
are based on random lattices that enjoy worst-case hardness; second and more importantly, the signatures
are generated by a randomized decoding algorithm whose output distribution is oblivious to the geometry
of the secret basis. (Recall that the original GGH proposal is insecure precisely because its signatures leak
information about the “shape” of the trapdoor basis [NR06].)

Trapdoors for learning with errors. Our next two applications are centered around the learning with
errors (LWE) problem, as defined by Regev [Reg05]. We observe that LWE is essentially a bounded-distance
decoding problem on the dual lattice Λ∗ of Λ, where as above, Λ is a random lattice having public basis B
(and trapdoor basis T). Using this interpretation, the goal of LWE is to decode a randomly-chosen lattice
vector w ∈ Λ∗ that has been perturbed to a point p by some small amount of noise. The perturbation is small
enough that w is the unique vector closest to p (with overwhelming probability).

In an optimized version of Regev’s LWE-based cryptosystem [Reg05], the same dual lattice Λ∗ is shared
among all users, and public keys are perturbed points p as above. Security is demonstrated by showing
that such public keys are indistinguishable from so-called “messy” public keys, whose ciphertexts carry no
information about the encrypted messages. As in prior lattice-based cryptosystems [AD97, Reg04b], this
security argument is probabilistic and non-constructive.

A concurrent work of Peikert, Vaikuntanathan, and Waters [PVW07] uses cryptosystems that have messy
public keys to instantiate a framework for efficient oblivious transfer. However, the framework requires a way
to identify messy keys efficiently, given some master trapdoor for the cryptosystem. In this work, we give an
explicit geometric description of messy keys in Regev’s cryptosystem, and a way of efficiently identifying
them. Essentially, a public key p is messy if the minimum distance of the dual lattice Λ∗ remains large after
adjoining p to it. To identify such keys, we use the Gaussian sampling algorithm with the trapdoor basis T of
Λ to implement the preprocessing phase of an algorithm of Aharonov and Regev [AR05]. Using an extension
of this algorithm due to Liu, Lyubashevsky, and Micciancio [LLM06], we also show how to recover the
secret key w ∈ Λ∗ from any properly-generated public key p, i.e., we show how to solve LWE using a master
trapdoor.

Identity-based encryption. In identity-based encryption (IBE), proposed by Shamir [Sha84], any string
can serve as a public key, and secret keys are administered by an authority who knows some master secret
key of the system. Thus far, IBE has been realized under various assumptions relating to groups with bilinear
pairings (e.g., [BF03, BB04, Wat05]), and under the quadratic residuosity (QR) assumption in the random
oracle model or an “interactive” QR assumption in the plain model [Coc01, BGH07].

Our final application is an efficient (and “anonymous”) IBE based on LWE in the random oracle model
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(or in the plain model under an interactive LWE assumption). Although secret keys can be extracted from
public keys using a master trapdoor as described above, obtaining IBE is still not entirely straightforward.
Essentially, the problem is that well-formed public keys are exponentially sparse, because they consist only
of points that are very close to the shared lattice Λ∗. Hence, it is difficult to see how a hash function or a
random oracle could map identities to valid public keys.

We circumvent this problem by constructing a “dual” of Regev’s public-key cryptosystem, in which the
key generation and encryption algorithms are effectively swapped: public keys belong to the “primal space”
containing Λ, and encryption is performed in the “dual space” containing Λ∗. In the resulting system, every
point of the primal space is a valid public key having many equivalent secret keys, which are simply the
nearby lattice points in Λ. Using the Gaussian decoder with the trapdoor basis T of Λ, the authority can
extract a (properly-distributed) secret key from any public key. (In fact, extracting a secret key for an identity
is entirely equivalent to signing that identity under the FDH signature scheme.)

Because it uses a trapdoor for extracting secret keys, our IBE is structurally closest to those based on
quadratic residuosity [Coc01, BGH07]. It is the most efficient IBE to date, at least in an asymptotic sense:
for messages of length n log n (where n is the security parameter), the amortized encryption and decryption
times are only Õ(n) per message bit, and the ciphertext expansion factor can be made as small as O(1). One
possible drawback of our system is that the master public key and individual secret keys are Õ(n2) bits. As
a point of comparison, the recent QR-based IBE of Boneh, Gentry, and Hamburg [BGH07] has essentially
optimal additive ciphertext expansion ofO(n) bits (where n is the size of the master public modulusN = pq),
but the encryption and decryption times are O(n4) and O(n3) per message bit, respectively.

1.2 Related Work

The randomized nearest-plane algorithm we use for Gaussian sampling was originally proposed by Klein [Kle00]
for solving a variant of the closest vector problem, in which the target point is guaranteed to be “unusually
close” to the lattice. Klein’s analysis is focused on the case where the parameter s is no more than (a small
factor times) the length of the shortest Gram-Schmidt vector of the input basis; for such parameters, the
output distribution is concentrated on the unique closest lattice vector, but may be quite far from a discrete
Gaussian. A preliminary version of [NV08] showed that the output distribution is “quasi-Gaussian” when s
is at least the length of the longest Gram-Schmidt vector; our analysis essentially subsumes that analysis.

Independently of our work, Lyubashevsky and Micciancio [LM08] gave a direct lattice-based construction
of a one-time signature scheme that can sign O(n)-bit messages in Õ(n) time. The functionality and security
of the scheme both rely on special classes of cyclic/ideal lattices having algebraic structure, which were
studied previously in [Mic07, PR06, LM06, PR07]. A full signature scheme having comparable asymptotic
efficiency can be obtained by incorporating the one-time scheme into a tree-based construction.

Several works have given tight security reductions for FDH-like signatures based on variants of trapdoor
permutations or specific number-theoretic assumptions. Coron [Cor00] improved the exact security of FDH
for its concrete instantiation with RSA. Dodis and Reyzin [DR02] presented tight reductions for probabilistic
FDH (PFDH) based on any collection of claw-free pairs of trapdoor permutations. Katz and Wang [KW03]
gave a tight reduction based on claw-free pairs for PFDH with only one bit of salt. Bernstein [Ber08] recently
gave a tight reduction for a concrete instantiation of FDH with Rabin-Williams signatures. We point out that
claw-free pairs of trapdoor permutations can be viewed as a special case of collision-resistant PSFs from
n + 1 bits to n bits, where the extra input bit indicates which of the two permutations is evaluated on the
remaining bits.

Using entirely different techniques, Peikert and Waters [PW08] constructed complementary collections
of injective trapdoor functions based on LWE (among other assumptions). Their TDFs imply several
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cryptographic primitives, most notably chosen ciphertext-secure encryption, but have exponentially-sparse
images that seem less well-suited toward applications like signature schemes and IBE. From a purely aesthetic
point of view, our trapdoor functions also correspond more directly to “natural” lattice problems.

1.3 Open Problems

Many interesting questions arise from our work. The most important problem, in our view, is to construct a
simple and efficient lattice-based signature scheme without using tree structures or a random oracle. Even
under other strong number-theoretic assumptions, only a few such schemes are known (e.g., [GHR99, CS00]),
so this problem appears quite challenging. A related problem is to construct an IBE without a random oracle
under standard lattice assumptions (recall that our IBE can be based on a non-standard “interactive” LWE
assumption in the plain model).

Another important direction is to obtain more efficient cryptographic schemes based on ideal (e.g., cyclic)
lattices, as in prior works [Mic07, PR06, LM06, PR07, LM08]. Most of our techniques apply equally well
to ideal lattices; two main technical hurdles are to generate appropriate random lattices with good trapdoor
bases, and to demonstrate a hard decoding problem analogous to LWE.

The concrete security of our schemes (i.e., the approximation factor obtained by the worst-case/average-
case reduction) is determined by the Gaussian parameter of the sampling algorithm, which in turn depends on
the quality of the trapdoor basis. It is therefore important to optimize Ajtai’s trapdoor generator [Ajt99] and
its analysis, as well as to seek other Gaussian sampling algorithms that might work for smaller parameters s
(perhaps given different advice).

A final interesting problem is to construct a lattice-based IBE having security under chosen-ciphertext
attack (CCA security). The techniques of [PW08] for obtaining CCA security in lattice-based public-key
cryptosystems are quite different from ours, and do not appear to be immediately applicable to our IBE.
Combining the two approaches seems to be a worthy goal.

1.4 Organization and Reader’s Guide

For the reader interested mainly in our cryptographic constructions (but who may not be familiar with recent
work on lattices), we recommend starting with the background in Sections 2.3 and 2.4, and the statements of
Lemma 3.1 and Theorem 4.1. We then suggest moving directly to Section 5, which contains background
on hard random lattices, our abstract definition of trapdoor functions with preimage sampling, and concrete
instantiations. The signature schemes in Section 6 can be fully understood based only on the abstract
definition (found in Section 5.3.1). To understand our IBE construction in Section 7, we recommend first
reading the LWE background in Section 2.5 and understanding the concrete lattice-based trapdoor functions of
Section 5. The trapdoor techniques for LWE in Section 8 are the most technical and rely on results from other
recent works, but can be understood after absorbing the background on LWE and the details of Section 5.1.

For the reader interested more in the new analytic and algorithmic results for lattices (but who may not
be as interested in the cryptographic applications), we recommend reading (in order) the new smoothing
parameter bound in Section 3, the analysis of the Gaussian sampling algorithm in Section 4, and the simplified
worst-case to average-case reduction in Section 9.
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2 Preliminaries

2.1 Notation

We denote set of real numbers by R and the integers by Z. For a positive integer n, [n] denotes {1, . . . , n}.
We extend any real function f(·) to a countable set A by defining f(A) =

∑
x∈A f(x).

By convention, vectors are assumed to be in column form and are written using bold lower-case letters,
e.g. x. The ith component of x will be denoted by xi. Matrices are written as bold capital letters, e.g. X, and
the ith column vector of a matrix X is denoted xi. The length of a matrix is the norm of its longest column:
‖X‖ = maxi‖xi‖. For notational convenience, we sometimes view a matrix as simply the set of its column
vectors.

The natural security parameter throughout the paper is n, and all other quantities are implicitly functions
of n. We use standard big-O notation to classify the growth of functions, and say that f(n) = Õ(g(n))
if f(n) = O(g(n) · logc n) for some fixed constant c. We let poly(n) denote an unspecified function
f(n) = O(nc) for some constant c. A negligible function, denoted generically by negl(n), is an f(n) such
that f(n) = o(n−c) for every fixed constant c. We say that a probability (or fraction) is overwhelming if it is
1− negl(n).

The statistical distance between two distributions X and Y over a countable domain D is defined to be
1
2

∑
d∈D |X(d)− Y (d)|. We say that two distributions (formally, two ensembles of distributions indexed by

n) are statistically close if their statistical distance is negligible in n.
Two ensembles of distributions {Xn} and {Yn} are computationally indistinguishable if for every

probabilistic poly-time machine A, |Pr[A(1n, Xn) = 1]− Pr[A(1n, Yn) = 1]| is negligible (in n). The
definition is extended to non-uniform families of poly-sized circuits in the standard way.

2.2 Cryptographic Notions

For signature schemes, we use the standard notion of existential unforgeability under chosen-message
attack due to Goldwasser, Micali, and Rivest [GMR88]. We actually only use the stricter notion of strong
unforgeability in which an adversary cannot even produce a new signature for any message on which it
queried its signing oracle. For public-key encryption, we use the standard definition of indistinguishability
under a chosen-plaintext eavesdropping attack (semantic security) [GM84].

For identity-based encryption (IBE), we use the standard definition of security under chosen-plaintext
and chosen-identity attack [BF03, ABC+05], which we summarize here. An IBE consists of the following
four algorithms.

• A setup algorithm IBESetup that outputs a master public key mpk and master secret key msk.

• A secret key extraction algorithm IBEExtract that, given msk and an identity id, outputs a secret key
sk for that identity.

• An encryption algorithm IBEEnc that, given the master public key mpk, an identity id, and a message
m, outputs a ciphertext c.

• A decryption algorithm IBEDec that, given a secret key sk and a ciphertext c, outputs a message m.

The completeness condition is that for all identities id, IBEDec correctly decrypts a ciphertext encrypted
to id, given the sk for id produced by IBEExtract. Security is defined by a game in which the adversary is
given mpk and access to an oracle computing IBEExtract. The adversary produces a challenge identity id∗
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and two valid messages m0,m1, is given an encryption of mb under id∗ for b← {0, 1} chosen uniformly at
random, and attempts to guess the value of b without ever querying its oracle on identity id∗ (queries can be
made both before and after the adversary produces id∗,m0,m1). We say that the scheme is secure if every
PPT adversary succeeds with probability at most negligibly more than 1/2.

2.3 Lattices

Let B = {b1, . . . ,bn} ⊂ Rn consist of n linearly independent vectors. The n-dimensional lattice5 Λ
generated by the basis B is

Λ = L(B) = {Bc =
∑

i∈[n]
ci · bi : c ∈ Zn}.

The minimum distance λ1(Λ) of a lattice Λ is the length (in the Euclidean `2 norm, unless otherwise
indicated) of its shortest nonzero vector: λ1(Λ) = min06=x∈Λ‖x‖. More generally, the ith successive
minimum λi(Λ) is the smallest radius r such that Λ contains i linearly independent vectors of norm at
most r. We write λ∞1 to denote the minimum distance measured in the `∞ norm (which is defined as
‖x‖∞ = max |xi|).

A lattice is a discrete additive subgroup of Rn. Therefore for lattices Λ′ ⊆ Λ, the quotient group Λ/Λ′

(also written Λ mod Λ′) is well-defined as the additive group of distinct cosets v + Λ′ for v ∈ Λ, with
addition of cosets defined in the usual way.

For any (ordered) set S = {s1, . . . , sn} ⊂ Rn of linearly independent vectors, let S̃ = {s̃1, . . . , s̃n}
denote its Gram-Schmidt orthogonalization, defined iteratively in the following way: s̃1 = s1, and for
each i = 2, . . . , n, s̃i is the component of si orthogonal to span(s1, . . . , si−1). Clearly, ‖s̃i‖ ≤ ‖si‖. The
following useful lemma says that any full-rank set of vectors in a lattice can be efficiently converted to a basis
of the lattice, without increasing the lengths of the Gram-Schmidt vectors.

Lemma 2.1 ([MG02, Lemma 7.1, page 129]). There is a deterministic polynomial-time algorithm that, given
an arbitrary basis B of an n-dimensional lattice Λ = L(B) and a full-rank set of lattice vectors S ⊂ Λ,
outputs a basis T of Λ such that ‖t̃i‖ ≤ ‖s̃i‖ for all i ∈ [n].

The dual lattice of Λ, denoted Λ∗, is defined to be Λ∗ = {x ∈ Rn : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}. By symmetry,
it can be seen that (Λ∗)∗ = Λ. If B is a basis of Λ, it can be seen that the dual basis B∗ = (B−1)T is in fact
a basis of Λ∗. The following standard fact relates the Gram-Schmidt orthogonalizations of a basis and its
dual (a proof can be found in [Reg04a, Lecture 8]).

Lemma 2.2. Let {b1, . . . ,bn} be an (ordered) basis, and let {d1, . . . ,dn} be its dual basis in reversed
order (i.e., di = b∗n−i+1). Then d̃i = b̃i/‖b̃i‖2 for all i ∈ [n]. In particular, ‖d̃i‖ = 1/‖b̃i‖.

We recall two standard worst-case approximation problems on lattices. In both problems, γ = γ(n) is
the approximation factor as a function of the dimension.

Definition 2.3 (Shortest Vector Problem (Decision Version)). An input to GapSVPγ is a basis B of a full-rank
n-dimensional lattice. It is a YES instance if λ1(L(B)) ≤ 1, and is a NO instance if λ1(L(B)) > γ(n).

Definition 2.4 (Shortest Independent Vectors Problem). An input to SIVPγ is a full-rank basis B of an
n-dimensional lattice. The goal is to output a set of n linearly independent lattice vectors S ⊂ L(B) such
that ‖S‖ ≤ γ(n) · λn(L(B)).

5Technically, this is the definition of a full-rank lattice, which is all we will be concerned with in this work.
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2.4 Gaussians on Lattices

Our review of Gaussian measures over lattices follows the development by prior works [Reg04b, AR05,
MR07]. For any s > 0 define the Gaussian function on Rn centered at c with parameter s:

∀x ∈ Rn, ρs,c(x) = exp(−π‖x− c‖2/s2).

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.
For any c ∈ Rn, real s > 0, and n-dimensional lattice Λ, define the discrete Gaussian distribution over Λ

as:

∀x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

.

(As above, we may omit the parameters s or c.) Note that the denominator in the above expression is merely
a normalization factor; the probability DΛ,s,c(x) is simply proportional to ρs,c(x).

Micciancio and Regev [MR07] proposed a lattice quantity called the smoothing parameter:

Definition 2.5 ([MR07]). For any n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter
ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ∗\{0}) ≤ ε.

In this paper we use two bounds on the smoothing parameter. The first relates the smoothing parameter
of a lattice to the minimum distance of its dual lattice, in the `∞ norm. We note that the smoothing parameter
can also be related to the dual minimum distance in the `2 norm, as shown in [MR07, Lemma 3.2]. However,
the `∞ norm turns out to be easier to analyze for the random lattices we use, and also yields the tightest
bounds on their smoothing parameters.

Lemma 2.6 ([Pei07], using [Ban95]). For any n-dimensional lattice Λ and real ε > 0, we have

ηε(Λ) ≤
√

log(2n/(1 + 1/ε))/π
λ∞1 (Λ∗)

.

Then for any ω(
√

log n) function, there is a negligible ε(n) for which ηε(Λ) ≤ ω(
√

log n)/λ∞1 (Λ∗).

The second bound on the smoothing parameter is new to this work; it relates the smoothing parameter to
the longest Gram-Schmidt vector in any basis of the lattice. See Section 3 for a precise statement and proof.

We now state some central facts regarding discrete Gaussians that apply when the Gaussian parameter s
exceeds the smoothing parameter of the lattice. The following lemma states that the total Gaussian measure
on any translate of the lattice is essentially the same.

Lemma 2.7 ([MR07], implicit in Lemma 4.4). Let Λ be any n-dimensional lattice. Then for any ε ∈ (0, 1),
s ≥ ηε(Λ), and c ∈ Rn, we have

ρs,c(Λ) ∈ [1−ε
1+ε , 1] · ρs(Λ).

A corollary is that a Gaussian sample over Λ is distributed almost-uniformly modulo a sublattice Λ′, if
s ≥ ηε(Λ′).

Corollary 2.8. Let Λ,Λ′ be n-dimensional lattices, with Λ′ ⊆ Λ. Then for any ε ∈ (0, 1
2), any s ≥ ηε(Λ′),

and any c ∈ Rn, the distribution of (DΛ,s,c mod Λ′) is within statistical distance at most 2ε of uniform over
(Λ mod Λ′).
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Proof. Consider the marginal distribution of (z mod Λ′) where z← DΛ,s,c. Then for any coset v + Λ′ of
Λ/Λ′, the probability that z ∈ v + Λ′ is proportional to

ρs,c(v + Λ′) = ρs,c−v(Λ′) ∈ [1−ε
1+ε , 1] · ρs(Λ′)

by Lemma 2.7. By a routine calculation, it follows that for every v ∈ Λ, Prz[z = v mod Λ′] is in the range
(1± 4ε)/ |Λ/Λ′|, which yields the claim.

Another fact we need says that a sample from a discrete Gaussian with parameter s is at most s
√
n away

from its center (in the `2 norm), with overwhelming probability.

Lemma 2.9 ([MR07, Lemma 4.4]). For any n-dimensional lattice Λ, c ∈ span(Λ), real ε ∈ (0, 1), and
s ≥ ηε(Λ),

Pr
x∼DΛ,s,c

[
‖x− c‖ > s

√
n
]
≤ 1+ε

1−ε · 2
−n.

The final fact we need for certain applications is an upper bound on the probability of the mode (the most
likely element) of a discrete Gaussian; equivalently, it is a lower bound on the min-entropy of the distribution.

Lemma 2.10 ([PR06]). For any n-dimensional lattice Λ, center c ∈ Rn, positive ε > 0, and s ≥ 2ηε(Λ),
and for every x ∈ Λ, we have

DΛ,s,c(x) ≤ 1+ε
1−ε · 2

−n.

In particular, for ε < 1
3 , the min-entropy of DΛ,s,c is at least n− 1.

2.5 Learning with Errors

We now review the learning with errors (LWE) problem, for the most part following [Reg05].
For x ∈ R, bxe = bx+ 1/2c denotes a nearest integer to x. Denote T = R/Z as the group of reals [0, 1)

with mod 1 addition.

Probability distributions. The normal (Gaussian) distribution with mean 0 and variance σ2 (or standard
deviation σ) is the distribution on R having density function 1

σ·
√

2π
exp(−x2/2σ2). The sum of two indepen-

dent normal variables with mean 0 and variances σ2
1 and σ2

2 (respectively) is a normal variable with mean 0
and variance σ2

1 + σ2
2 . We will also need a standard tail inequality: a normal variable with variance σ2 is

within distance t · σ (i.e., t standard deviations) of its mean, except with probability at most 1
t · exp(−t2/2).

For α ∈ R+, Ψα is defined to be the distribution on T of a normal variable with mean 0 and standard
deviation α/

√
2π, reduced modulo 1. For any probability distribution φ over T and an integer q ∈ Z+ (often

implicit) its discretization φ̄ is the discrete distribution over Zq of the random variable bq ·Xφe mod q, where
Xφ has distribution φ.

For an integer q ≥ 2 and some probability distribution χ over Zq, an integer dimension n ∈ Z+ and a
vector s ∈ Znq , define As,χ as the distribution on Znq × Zq of the variable (a,aT s + x) where a ← Znq is
uniform and x← χ are independent, and all operations are performed in Zq.
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Learning with errors (LWE). For an integer q = q(n) and a distribution χ on Zq, the goal of the (average-
case) learning with errors problem LWEq,χ is to distinguish (with nonnegligible probability) between the
distribution As,χ for some uniform (secret) s ← Znq and the uniform distribution on Znq × Zq (via oracle
access to the given distribution). In other words, if LWE is hard, then the collection of distributions As,χ is
pseudorandom.

Regev demonstrated that for certain moduli q and Gaussian error distributions χ, LWEq,χ is as hard as
solving several standard worst-case lattice problems using a quantum algorithm.

Proposition 2.11 ([Reg05]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such that α · q > 2
√
n.

If there exists an efficient (possibly quantum) algorithm that solves LWEq,Ψ̄α , then there exists an efficient
quantum algorithm for approximating SIVP and GapSVP in the `2 norm, in the worst case, to within Õ(n/α)
factors.

This result was subsequently extended to hold for SIVP and GapSVP in any `p norm, 2 ≤ p ≤ ∞, for
essentially the same Õ(n/α) approximation factors [Pei07].

3 New Smoothing Parameter Bound

Here we give a new bound on the smoothing parameter relative to a certain lattice quantity. For a lattice Λ,
define the Gram-Schmidt minimum as

b̃l(Λ) = min
B
‖B̃‖ = min

B
max
i∈[n]
‖b̃i‖,

where the minimum is taken over all (ordered) bases B of Λ. The definition is restricted to bases without loss
of generality, because Lemma 2.1 implies that for any full-rank set S ⊂ Λ, there is a basis T of Λ such that
‖T̃‖ ≤ ‖S̃‖ ≤ ‖S‖.

In this section we prove two lemmas regarding the Gram-Schmidt minimum:

Lemma 3.1. For any n-dimensional lattice Λ and real ε > 0, we have

ηε(Λ) ≤ b̃l(Λ) ·
√

log(2n(1 + 1/ε))/π.

Then for any ω(
√

log n) function, there is a negligible ε(n) for which ηε(Λ) ≤ b̃l(Λ) · ω(
√

log n).

Lemma 3.2. For any n-dimensional lattice Λ,

λ1(Λ) ≤ b̃l(Λ) ≤ λn(Λ) ≤ 2µ(Λ) ≤
√
n · b̃l(Λ).

Furthermore, the latter inequality is tight up to some constant factor, i.e., there exists a family of lattices
{Λn}n∈N such that Λn is an n-dimensional lattice and λn(Λn) ≥ Ω(

√
n) · b̃l(Λn).

In particular, because b̃l(Λ) ≤ λn(Λ) by Lemma 3.2, the bound from Lemma 3.1 on the smoothing
parameter is at least as strong as a prior one relating it to λn [MR07, Lemma 3.3]. Moreover, by the last part
of Lemma 3.2, the new bound can be up to an Ω(

√
n) factor tighter.

We note that our definition of the Gram-Schmidt minimum is equivalent to the (unnamed) quantity b̃l
defined by Cai [Cai98], who gave an elementary proof of the fact that

1 ≤ λ1(Λ∗) · b̃l(Λ) ≤ O(n)
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for any n-dimensional lattice Λ. In addition, an `2 version of b̃l, called the “shortest diagonal” σ(Λ), was
defined in [MG02, Chapter 7] as the minimum of (

∑
i∈[n]‖b̃i‖2)1/2 over all bases B of Λ. By standard

relations between the `2 and `∞ norms, we have b̃l(Λ) ≤ σ(Λ) ≤
√
n · b̃l(Λ).

We now prove the two lemmas.

Proof of Lemma 3.1. Let B be a basis of Λ such that ‖B̃‖ = b̃l(Λ). By applying rigid rotations and
reflections to the lattice Λ (resulting in corresponding transformations of the dual lattice Λ∗), we may assume
without loss of generality that the orthogonal Gram-Schmidt vectors b̃i are parallel to the standard basis
vectors ei ∈ Rn (respectively), i.e.,

b̃i = ‖b̃i‖ · ei.

The transformation does not affect the value of the smoothing parameter ηε(Λ), because it is defined with
respect to the Gaussian measure ρ1/s(Λ∗\{0}), which is invariant under rotations and reflections.

By Lemma 2.6, it suffices to show that λ∞1 (Λ∗) ≥ 1/b̃l(Λ). Let v ∈ Λ∗ be an arbitrary nonzero dual
lattice vector, and let ci = 〈v,bi〉 ∈ Z for all i ∈ [n]. Let i be the smallest index such that ci 6= 0; such an i
exists because v 6= 0 and the bi are linearly independent. Then v is orthogonal to span(b1, . . . ,bi−1), so
we have

ci = 〈v,bi〉 = 〈v, b̃i〉 = ‖b̃i‖ · 〈v, ei〉 = ‖b̃i‖ · vi ∈ Z\{0}.

Therefore we have
‖v‖∞ ≥ |vi| ≥ 1/‖b̃i‖ ≥ 1/b̃l(Λ),

as desired.

Proof of Lemma 3.2. The first inequality follows from ‖B̃‖ ≥ ‖b̃1‖ = ‖b1‖ ≥ λ1(Λ) for any basis B of Λ.
The second inequality follows immediately from the above discussion on converting a full-rank set into a
basis. The third inequality is from [MG02, Theorem 7.9]. For the final inequality, observe that for any target
point t ∈ Rn, the nearest plane algorithm [Bab86] on input t and any basis B of Λ outputs a v ∈ Λ such that

‖v − t‖2 ≤ 1
4

∑
i∈[n]

‖b̃i‖2 ≤
n

4
· ‖B̃‖2.

Letting B be such that ‖B̃‖ = b̃l(Λ), we see that the covering radius µ(Λ) ≤
√
n

2 · b̃l(Λ), as desired.
TODO: write the tightness proof.

4 Sampling from Discrete Gaussians

Here we show how to use an arbitrary basis B to sample efficiently from the discrete Gaussian distribution
DΛ,s,c, for any s greater than ‖B̃‖ (times a small extra factor). In particular, it suffices to have an appropriately
short full-rank set of lattice vectors S ⊂ Λ, because by Lemma 2.1 we can efficiently convert it into a basis B
such that ‖B̃‖ ≤ ‖S̃‖ ≤ ‖S‖.

As a first attempt, consider an algorithm that first samples from a continuous Gaussian with parameter s,
and then uses B to “round off” the sampled point to a relatively nearby lattice point. In fact, Regev applied
this exact strategy in the “bootstrapping” step of his reduction [Reg05], using an LLL-reduced basis and a
Gaussian parameter s that was an exponential factor larger than the basis length ‖B‖.

Unfortunately, this strategy does not work so well when s is a small multiple of the basis length. The
problem can be seen even when Λ is a one-dimensional lattice, e.g., the set of integers Z ⊂ R1. Consider the
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distribution D induced by the rounding scheme, using a continuous Gaussian centered at zero with parameter
s = nc for some constant c > 0. A routine calculation shows that the probability assigned to zero by D is
erf(
√
π/2s) = 1/s − Ω(1/s3), by the Maclaurin series expansion of the error function erf . On the other

hand, it can be shown that the probability assigned to zero by the desired distribution DZ,s is negligibly
close to 1/s. Therefore, the statistical distance between the two distributions is at least Ω(1/s3), which is
non-negligible. For n-dimensional lattices, the distribution induced by the rounding scheme is even more
biased, because the distance between the sampled point and its rounded-off lattice point grows with n.6

Instead of using continuous distributions, we show how to sample “directly” from a lattice under the
desired discrete Gaussian distribution. Even in the one-dimensional case, this requires some care: the support
of the distribution is infinite, and even a close approximation to it may not have a succinct representation
(e.g., when the parameter s is large). We first define a core subroutine that samples from the integer lattice
Z. We then use this subroutine to define a randomized variant of Babai’s nearest plane algorithm [Bab86],
which is essentially equivalent to one proposed by Klein [Kle00] in another context. The novelty here is a
nearly-exact analysis of its output distribution for a suitable choice of parameters.

Theorem 4.1. There is a probabilistic polynomial-time algorithm that, given a basis B of an n-dimensional
lattice Λ = L(B), a parameter s ≥ ‖B̃‖ · ω(

√
log n), and a center c ∈ Rn, outputs a sample from a

distribution that is statistically close to DΛ,s,c.

4.1 Sampling Integers

We first define the subroutine SampleZ, which samples from the discrete Gaussian DZ,s,c over the one-
dimensional integer lattice Z. Let t(n) ≥ ω(

√
log n) be some fixed function, say, t(n) = log n. SampleZ

uses rejection sampling, and works as follows: on input (s, c) and (implicitly) the security parameter n,
choose an integer x ← Z

.= Z ∩ [c − s · t(n), c + s · t(n)] uniformly at random. Then with probability
ρs(x− c) ∈ (0, 1], output x, otherwise repeat.

The correctness of the SampleZ relies on the following tail inequality on the distribution DZ,s,c.

Lemma 4.2. For any ε > 0, any s ≥ ηε(Z), and any t > 0,

Pr
x∼DZ,s,c

[|x− c| ≥ t · s] ≤ 2e−πt
2 · 1+ε

1−ε .

In particular, for ε ∈ (0, 1
2) and t ≥ ω(

√
log n), the probability that |x− c| ≥ t · s is negligible.

Proof. Let B = (−1, 1) ⊂ R be the one-dimensional open unit ball. We use the following fact from [Ban95,
Lemma 2.10]:

ρs((Z− c)\t · s · B) ≤ 2e−πt
2 · ρs(Z).

Now consider the total probability assigned by DZ,s,c to all integers outside t · s · (B + c). This is

DZ,s,c(Z\(s · t · (B + c))) =
ρs((Z− c)\t · s · B)

ρs,c(Z)
≤ 2e−πt

2 · ρs(Z)
ρs,c(Z)

≤ 2e−πt
2 · ρs(Z)

1−ε
1+ε · ρs(Z)

,

where we have used Lemma 2.7 for the last inequality. This completes the proof.
6By carefully employing an additional rejection sampling step, it is possible to compensate somewhat for the bias in the rounding

scheme. However, the resulting algorithm is quite inefficient and “loose,” i.e., it works for a parameter s that is a
√
n factor larger

than the diameter the basis (which may itself be up to an n factor larger than length of the basis).
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Lemma 4.3. For any 0 < ε < exp(−π), any s ≥ ηε(Z) and c ∈ R, and any ω(log n) function, SampleZ
terminates within t(n) · ω(log n) iterations with overwhelming probability, and its output distribution is
statistically close to DZ,s,c. (Note that the number of iterations is independent of the Gaussian parameter s.)

Proof. First define a probability distribution D on Z in which D(x) is proportional to ρs(x− c) for every
x ∈ Z, and D(x) = 0 otherwise. Then the output distribution of SampleZ is identical to D. Furthermore, D
and DZ,s,c are statistically close, by Lemma 4.2.

We now analyze the running time. Each iteration of SampleZ picks an integer x uniformly at random
from Z. The probability that x lies in Z ∩ [c − s, c + s] is at least (2s − 1)/(2st + 1) ≥ 1/(3t), because
s ≥ ηε(Z) ≥ 1. Once chosen, x is then output with probability ρs(x− c) ≥ exp(−π), a positive constant.
By a standard repetition argument, the algorithm therefore terminates within t(n) · ω(log n) iterations
with overwhelming probability. (The probability can be made 1 without significantly altering the output
distribution by terminating and outputting 0 after some ω(log n) iterations.)

4.2 Sampling from Arbitrary Lattices

We now describe a randomized nearest-plane algorithm, called SampleD, that samples from a discrete
Gaussian DΛ,s,c over any lattice Λ. In each iteration, the algorithm simply chooses a plane at random by
sampling from an appropriate discrete Gaussian over the integers Z.

The input to SampleD is an (ordered) basis B of an n-dimensional lattice Λ, a parameter s > 0, and a
center c ∈ Rn. We describe the algorithm as if it has access to an oracle that samples exactly from DZ,s′,c′

for any desired s′ > 0 and c′ ∈ R. (As long as s′ is sufficiently large, the oracle can be implemented by the
SampleZ algorithm described above.) SampleD proceeds as follows:

1. Let vn ← 0 and cn ← c. For i← n, . . . , 1, do:

(a) Let c′i = 〈ci, b̃i〉/〈b̃i, b̃i〉 ∈ R and s′i = s/‖b̃i‖ > 0.

(b) Choose zi ∼ DZ,s′i,c′i (this is the only step that differs from the nearest-plane algorithm).

(c) Let ci−1 ← ci − zibi and let vi−1 ← vi + zibi.

2. Output v0.

Assuming scalar operations take unit time, the running time of the algorithm is O(n2) plus the running
time of the n oracle calls. Note that every variable is assigned exactly once, and the value ci (respectively,
vi, c′i, s

′
i) is never used once ci−1 (resp., vi=1, c′i−1, s′i−1) is defined. Therefore, an implementation would

typically use one mutable register to store the successive values of ci (likewise, vi, c′i, s
′
i); the indices are

only in place to aid the analysis.
By construction, the output of SampleD is always a lattice vector, and there is a bijective correspondence

between the random choices of the zis and the lattice. In the following, for any fixed lattice vector v =∑
i∈[n] ẑibi ∈ Λ (where the input (B, s, c) is implicit), let SampleD → v denote the collection of values

assinged to all the internal variables during a hypothethical execution of SampleD that outputs v, i.e., where
every choice of zi = ẑi.

Lemma 4.4. For any input (B, s, c) and any output v = v0 =
∑

i∈[n] ẑibi ∈ L(B) of SampleD,

v − c =
∑
i∈[n]

(ẑi − c′i) · b̃i,

where the values c′i are as in SampleD→ v.
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Proof. For i ∈ [n], define πi : Rn → span(b1, . . . ,bi) to be the orthogonal projection onto its range. We
prove by induction that for all j = 0, . . . , n,

(v0 − vj)− πj(cj) =
∑
i∈[j]

(ẑi − c′i) · b̃i,

where the relevant variables above are as in SampleD→ v. The claim follows by taking j = n and the fact
that vn = 0, cn = c, and c ∈ span(b1, . . . ,bn) = Rn.

First, observe that the base case j = 0 is trivially true. Now suppose the hypothesis is true for j = k − 1
for some k ∈ [n]. Using vk = vk−1 − ẑkbk, ck = ck−1 + ẑkbk, the definition of c′k, and the inductive
hypothesis, we have

v0 − vk − πk(ck) = (v0 − vk−1) + ẑkbk − (πk−1(ck) + c′kb̃k)
= (v0 − vk−1) + ẑkbk − πk−1(ck−1)− πk−1(ẑkbk)− c′kb̃k
= (v0 − vk−1 − πk−1(ck−1)) + ẑk(bk − πk−1(bk))− c′kb̃k
= (v0 − vk−1 − πk−1(ck−1)) + (ẑk − c′k) · b̃k
=

∑
i∈[k]

(ẑi − c′i) · b̃i,

which proves the claim for j = k, and we are done.

Lemma 4.5. For any input (B, s, c) and any v =
∑

i∈[n] ẑibi ∈ L(B), the probability that SampleD outputs
v is exactly

ρs,c(v) ·
∏
i∈[n]

1
ρs′i,c′i(Z)

,

where the values s′i, c
′
i are as in SampleD→ v.

Proof. Consider the event E that SampleD outputs v. First, observe that E occurs if and only if every
random choice zi = ẑi for i = n, . . . , 1. For each i, the probability that zi = ẑi, conditioned on zj = ẑj for
all j = n, . . . , i+ 1, is exactly DZ,s′i,c′i(ẑi). Therefore, the probability of E is

∏
i∈[n]

DZ,s′i,c′i(ẑi) =

∏
i∈[n] ρs′i,c′i(ẑi)∏
i∈[n] ρs′i,c′i(Z)

.

The numerator in the above expression is∏
i∈[n]

ρs′i,c′i(ẑi) =
∏
i∈[n]

ρs((ẑi − c′i) · ‖b̃i‖) = ρs

(∑
i∈[n]

(ẑi − c′i) · b̃i
)

= ρs(v − c) = ρs,c(v),

where the first equality is by definition of s′i and ρs′i,c′i , the second equality is by mutual orthogonality of the
Gram-Schmidt vectors b̃i and the definition of ρs, and the third equality is by Lemma 4.4. This completes
the proof.

We now prove the main theorem.
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Proof of Theorem 4.1. The algorithm is simply SampleD using SampleZ to implement the oracle forDZ,s′,c′ .
By Lemma 3.1, there is a negligible ε(n) for which each s′i = s/‖b̃i‖ ≥ ω(

√
log n) ≥ ηε(Z). Then

Lemma 4.3 implies that SampleZ faithfully implements the oracle (to within negligible statistical distance).
We now show that SampleD (given a perfect oracle for DZ,s′,c′) samples to within negligible statistical

distance of DΛ,s,c. First note that under the desired distribution DΛ,s,c, the probability of v is Q−1 · ρs,c(v),
where Q = ρs,c(Λ) is a normalization factor. Now consider the output distribution of SampleD. Because
each s′i ≥ ηε(Z) where ε(n) is the negligible function from above, Lemma 2.7 implies that

ρs′i,c′i(Z) ∈ [1−ε
1+ε , 1] · ρs′i(Z)

for any value of c′i ∈ R. By Lemma 4.5, for every v ∈ L(B) the probability that SampleD outputs v is in the
range

R−1 ·
[
1, (1+ε

1−ε)
n
]
· ρs,c(v) ⊆ R−1 · [1, 1 + ε′] · ρs,c(v),

where R =
∏
i∈[n] ρs′i(Z) is a normalization factor independent of v and c, and ε′(n) is some negligible

function. It follows that R ∈ [1, 1 + ε′] · Q, and a routine calculation shows that the statistical distance
between SampleD’s output distribution and DΛ,s,c is at most ε′/2.

5 Trapdoors for Hard Lattices

In this section, we demonstrate trapdoors for certain families of random lattices that, roughly speaking,
enjoy worst-case hardness. We then develop some foundational tools and primitives that our cryptographic
applications will build upon.

5.1 Hard Random Lattices

We start by giving a unified description of two related families of random lattices that have appeared in recent
works. Both families consist of integer lattices (i.e., subsets of Zm) that are invariant under shifts by q in each
of the coordinates, for some specified integer modulus q. In other words, whether a vector x ∈ Zm belongs
to the lattice is determined entirely by the entries of x modulo q.

In more detail, let A ∈ Zn×mq for some positive integers n,m, q. In this work (as in prior ones), n is the
natural security parameter and all other variables are functions of n; for example, m = m(n) is typically
O(n log n), and the modulus q = q(n) is some small polynomial, e.g., O(n3). We consider two kinds of
full-rank m-dimensional integer lattices defined by A. The first consists of those integer vectors that are
“orthogonal” (modulo q) to the rows of A, and is defined as

Λ⊥(A) = {e ∈ Zm : Ae = 0 mod q}.

The second lattice is generated by the (transposed) rows of A, and is defined as

Λ(A) = {y ∈ Zm : y = AT s mod q for some s ∈ Zn}.

In the terminology of coding theory, A is the “parity check” matrix for the lattice Λ⊥(A), and AT is the
“generator matrix” for the lattice Λ(A). When A is implicit from context, we sometimes omit it as an
argument and just write Λ⊥ and Λ.

Throughout the paper, we use two easy but important facts about the lattices defined above. First, it can
be seen from their definitions that Λ and Λ⊥ (appropriately scaled) are duals:

Λ⊥ = q · Λ∗ and Λ = q · (Λ⊥)∗.
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The second fact is that the quotient group (Zm/Λ⊥) and the set of syndromes

{u = Ae mod q : e ∈ Zm} ⊆ Znq

are in bijective correspondence, via the mapping (e + Λ⊥) 7→ Ae mod q. In other words, computing the
syndrome Ae mod q for some e ∈ Zm is equivalent to reducing e modulo the lattice Λ⊥(A).

Ajtai [Ajt96] first showed that for appropriate parameters, solving SVP on the lattice Λ⊥(A) for uniformly
random A ∈ Zn×mq is as hard as approximating certain problems (e.g., SIVP and GapSVP) on any lattice of
dimension n to within poly(n) factors. Since then, the approximation factors for the underlying problems
have been improved to as small as Õ(n) [CN97, Mic04, MR07].

Regev [Reg05] defined the learning with error (LWE) problem, which can be phrased as a bounded-
distance problem on Λ(A) where A is chosen uniformly at random. He showed that LWE is hard on the
average unless there is an efficient quantum algorithm for solving SIVP and GapSVP on any lattice of
dimension n to within Õ(n) factors.

We now state a few important facts about these random lattices that will be used throughout the rest of
the paper. The first is a lemma on additive groups going back to [Ajt96]; the tightest version we know of was
proved in [Reg05].

Lemma 5.1. Let m ≥ 2n lg q. Then for all but an at most q−n fraction of A ∈ Zn×mq , the subset-sums of the
columns of A generate Znq ; i.e., for every syndrome u ∈ Znq there is a e ∈ {0, 1}m such that Ae = u mod q.7

The next lemma says that an integer error vector taken from an appropriate discrete Gaussian over Zm
corresponds to a nearly-uniform syndrome. It also characterizes the conditional distribution of the error
vector, given its syndrome.

Lemma 5.2. Assume the columns of A ∈ Zn×mq generate Znq , and let ε ∈ (0, 1
2) and s ≥ ηε(Λ⊥(A)). Then

for e ∼ DZm,s, the distribution of the syndrome u = Ae mod q is within statistical distance 2ε of uniform
over Znq .

Furthermore, fix u ∈ Znq and let t ∈ Zm be an arbitrary solution to At = u mod q. Then the conditional
distribution of e ∼ DZm,s given Ae = u mod q is exactly t +DΛ⊥,s,−t.

Proof. By hypothesis, the set of all syndromes {Ae mod q : e ∈ Zm} = Znq . Now by Lemma 2.8, for
e ∼ DZm,s the distribution of e mod Λ⊥ is within statistical distance 2ε of uniform over the quotient
group (Zm/Λ⊥). Because this quotient group is isomorphic to the set of syndromes Znq via the mapping
(e + Λ⊥) 7→ Ae mod q, the first claim follows.

For the second claim, fix u ∈ Znq and consider the distribution D of e ∼ DZm,s given Ae = u mod q.
The support of D is t + Λ⊥, and the distribution is

D(e) =
ρs(e)

ρs(t + Λ⊥)
=
ρs,−t(e− t)
ρs,−t(Λ⊥)

= DΛ⊥,s,−t(e− t).

Writing e = t + v, we see that v = e− t is distributed as DΛ⊥,s,−t, and the claim follows.

We now show that a random lattice Λ(A) has large minimum distance (in `∞ norm) with overwhelming
probability. This implies that Λ⊥(A) has a small smoothing parameter.

7In fact, the lemma is actually stronger, saying that a random subset-sum of A’s columns is statistically close to uniform over Znq
for almost all A.
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Lemma 5.3. Let n and q be positive integers with q prime, and let m ≥ 2n lg q. Then for all but an at most
q−n fraction of A ∈ Zn×mq , we have λ∞1 (Λ) ≥ q/4.

In particular, for such A and for any ω(
√

logm) function, there is a negligible function ε(m) such that
ηε(Λ⊥(A)) ≤ ω(

√
logm)

Proof. The second part of the claim follows by Lemma 2.6 and the fact that Λ = q · (Λ⊥)∗.
For the first part of claim, consider the open `∞ “cube” C of radius q/4 (hence edge length q/2). The set

Z = C∩Zm contains at most (q/2)m points. Therefore for any fixed nonzero s ∈ Znq , the probability over the
uniform choice of A ∈ Zn×mq that AT s = v mod q for some v ∈ Z is at most (q/2)m/qm = 2−m ≤ q−2n.
Taking a union bound over all nonzero s ∈ Znq , we conclude that the probability that Λ contains any nonzero
point in Z is at most q−n.

Combining the previous lemmas, we get the following main corollary:

Corollary 5.4. Let n and q be positive integers with q prime, and let m ≥ 2n lg q. Then for all but a 2q−n

fraction of all A ∈ Zn×mq and for any s ≥ ω(
√

logm), the distribution of the syndrome u = Ae mod q is
statistically close to uniform over Znq , where e ∼ DZm,s.

Proof. By Lemmas 5.1 and 5.3, for all but a 2q−n fraction of all A, the columns of A ∈ Zn×mq generate
Znq , and s ≥ ηε(Λ⊥(A)) for some negligible function ε(m). Now by Lemma 5.2, the distribution of
u = Ae mod q is statistically close to uniform over Znq .

5.2 Hard Average-Case Problems

The hard-on-average problem first proposed by Ajtai [Ajt96] is to find a short nonzero integer solution
e ∈ Zm to the homogeneous linear system Ae = 0 mod q for uniformly random A ∈ Zn×mq . This is
syntactically equivalent to finding some short nonzero vector in Λ⊥(A). The problem was formalized as
follows in [MR07].

Definition 5.5. The small integer solution problem SIS (in the `2 norm) is as follows: given an integer q,
a matrix A ∈ Zn×mq , and a real β, find a nonzero integer vector e ∈ Zm such that Ae = 0 mod q and
‖e‖2 ≤ β.

For functions q(n), m(n), and β(n), SISq,m,β is the ensemble over instances (q(n),A, β(n)) where
A ∈ Zn×m(n)

q is uniformly random.

We now define a variant problem, which is to find a short solution to a random inhomogeneous system,
specifically, Ae = u mod q (where both A and u are uniformly random).

Definition 5.6. The inhomogeneous small integer solution problem ISIS (in the `2 norm) is as follows: given
an integer q, a matrix A ∈ Zn×mq , a syndrome u ∈ Znq , and a real β, find an integer vector e ∈ Zm such that
Ae = u mod q and ‖e‖2 ≤ β.

The average-case problem ISISq,m,β is defined similarly, where A and u are uniformly random and
independent.

The ISIS problem is phrased as a syndrome decoding problem, and is equivalent to the problem of decoding
an arbitrary integer target point t ∈ Zm to within distance β on the lattice Λ⊥ = Λ⊥(A). Specifically, the
target point’s syndrome is u = At mod q, and solving ISIS on this syndrome yields a short error vector
e ∈ Zm having the same syndrome u. This error vector yields a lattice point v = t − e ∈ Λ⊥, because
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Av = At −Ae = 0 mod q; furthermore, v is within distance β of t. Conversely, decoding t to some
v ∈ Λ⊥ within distance β yields an error vector e = t− v such that Ae = u mod q. In this work it will be
more convenient and efficient to work with syndrome decoding, because the lattice Λ⊥ is “modded out” of
the instances. In other words, an instance of ISIS refers only to a particular coset of Λ⊥ in Znq , rather than an
unrestricted target point in Zm.

Of course, the SIS and ISIS problems are only meaningful if they admit valid solutions for the particular
choices of q, m, β. For β ≥

√
m and m ≥ 2n lg q (for prime q), Lemma 5.1 implies that with overwhelming

probability over the choice of A, there is an e ∈ {0, 1}m such that Ae = u mod q for any u ∈ Znq .
Then because ‖e‖ ≤

√
m ≤ β, we see that a uniformly random instance of ISISq,m,β has a solution with

overwhelming probability. For the same parameters, a pigeonhole argument shows that SIS always admits a
nonzero solution (even for non-prime q, though we will not need this fact). From now on, q, m, and β will
always implicitly satisfy the above contraints.

Using Gaussian techniques, Micciancio and Regev [MR07] showed that the SISq,m,β problem is as hard
(on the average) as approximating certain worst-case problems on lattices to within small factors. We give
a simpler and slightly tighter proof (also showing hardness for ISIS) that employs our discrete Gaussian
sampling algorithm, and which works for a smaller modulus q.

Proposition 5.7. For any poly-boundedm,β = poly(n) and for any prime q ≥ β ·ω(
√
n log n), the average-

case problems SISq,m,β and ISISq,m,β are as hard as approximating the SIVP problem (among others) in the
worst case to within certain γ = β · Õ(

√
n) factors.8

Note that Proposition 5.7 gives a “sliding scale” of hardness (and modulus q) depending on the value of
β. For the tightest value of β =

√
m, we can take q = Õ(n) and obtain approximation factors γ = Õ(n)

for the worst-case problems. However, for our trapdoor functions and other cryptographic primitives, we
will need to assume hardness of ISIS for larger values of β (e.g., β ≈ m1.5 = Õ(n1.5)). This is because our
trapdoor inversion algorithm is only able to produce preimages of length approximately

√
m times the length

of the trapdoor basis; the shorter the basis, the smaller we may take β to be, and the weaker the underlying
assumptions can be.

The proof of Proposition 5.7 appears in Section 9.

5.3 Preimage Sampleable Functions

5.3.1 Definitions

We start by defining some enhanced variants of preimage sampleable (trapdoor) functions, which are given
by a tuple of probabilistic polynomial-time algorithms (TrapGen,SampleDom,SamplePre).

A collection of one-way preimage sampleable functions (PSFs) satisfies the following:

1. Generating a function with trapdoor: TrapGen(1n) outputs (a, t), where a is the description of an
efficiently-computable function fa : Dn → Rn (for some efficiently-recognizable domain Dn and
range Rn depending on n), and t is some trapdoor information for fa.

For the remaining properties, fix some (a, t)← TrapGen(1n).

8It is possible to base the hardness of ISIS solely on the assumed hardness of SIS, but we only know of such a reduction for
slightly looser values of β. Because ISIS is interesting on its own, and might even be harder than SIS, we elect to treat it as a separate
problem and give a direct, tight reduction from worst-case lattice problems.
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2. Domain sampling with uniform output: SampleDom(1n) samples an x from some (possibly non-
uniform) distribution over Dn, for which the distribution of fa(x) is uniform over Rn.

3. Preimage sampling with trapdoor: for every y ∈ Rn, SamplePre(t, y) samples from the conditional
distribution of x← SampleDom(1n), given fa(x) = y.

4. One-wayness without trapdoor: for any probabilistic poly-time algorithm A, the probability that
A(1n, a, y) ∈ f−1

a (y) ⊆ Dn is negligible, where the probability is taken over the choice of a, the
target value y ← Rn chosen uniformly at random, and A’s random coins.9

Note that trapdoor permutations (with uniform distribution over the domain) satisfy this definition, because
the output distribution is uniform and every point has a unique inverse.

A collection of collision-resistant preimage sampleable functions satisfies the above properties, plus the
following:

5. Preimage min-entropy: for every y ∈ Rn, the conditional min-entropy of x← SampleDom(1n) given
fa(x) = y is at least ω(log n).

6. Collision resistance without trapdoor: for any probabilistic poly-time algorithm A, the probability that
A(1n, a) outputs distinct x, x′ ∈ Dn such that fa(x) = fa(x′) is negligible, where the probability is
taken over the choice of a and A’s random coins.

We point out that these two additional properties together imply one-wayness (Property 4). For if not, then
given a function fa one could find a collision as follows: choose an x ← SampleDom(1n), and obtain a
preimage x′ of fa(x) from the adversarial inverter. Then because x has large min-entropy given fa(x), we
have x′ 6= x with overwhelming probability, so x, x′ form a collision.

It is also possible to define a trapdoor variant of universal one-wayness [NY89], which is implied by
collision resistance. Because our constructions will be collision-resistant anyway, we omit a precise definition.

A collection of claw-free pairs of one-way/collision-resistant PSFs is defined similarly, with the following
differences: TrapGen outputs a pair a, a′ describing functions fa, fa′ : Dn → Rn (respectively), and their
respective trapdoors t, t′. The preimage sampler works the same way for both fa (given t) and fa′ (given
t′). The hardness condition is that no PPT algorithm A, given a, a′, can find a pair x, x′ ∈ Dn such that
fa(x) = fa′(x′). Each function fa, fa′ may itself also be collision-resistant in the usual way.

A needed relaxation. To be completely precise, the trapdoor functions we construct will actually satisfy a
slightly relaxed definition in which the properties are satisfied only statistically. First, the properties will
hold only with overwhelming probability over the choice of a. Additionally, SampleDom(1n) will output an
x ∈ Dn only with overwhelming probability, and the distribution of fa(x) will only be statistically close to
uniform. Finally, SamplePre will sample from a distribution over the preimages that is statistically close to
the prescribed conditional distribution. None of these relaxations will affect security in our applications.

5.3.2 Constructions

Before giving concrete constructions, we need to recall the result of Ajtai [Ajt99] that shows how to sample
an essentially uniform A ∈ Zn×mq , along with a relatively short full-rank “trapdoor” set of lattice vectors
S ⊂ Λ⊥(A).

9This property can be easily adapted to non-uniform adversaries modelled as families of circuits.
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Proposition 5.8 ([Ajt99]). For any prime q = poly(n) and any m ≥ 5n lg q, there is a probabilistic
polynomial-time algorithm that, on input 1n, outputs a matrix A ∈ Zn×mq and a full-rank set S ⊂ Λ⊥(A),
where the distribution of A is statistically close to uniform over Zn×mq and the length ‖S‖ ≤ L = m2.5.

In particular, by Lemma 2.1, the set S can be converted efficiently to a “good” basis T of Λ⊥(A) such
that ‖T̃‖ ≤ ‖S̃‖ ≤ L.

By optimizing Ajtai’s construction and its analysis, the bound L on the length ‖S‖ of the short set can be
improved to L = m1+ε for any ε > 0; we defer the details.

We can now construct a collection of PSFs based on the average-case hardness of SIS and/or ISIS.
Let q, m, and L be as in Proposition 5.8. The collection is parameterized by some Gaussian parameter
s ≥ L · ω(

√
logm).

• The function generator uses the algorithm from Proposition 5.8 to choose (A,T), where A ∈ Zn×mq

is statistically close to uniform and T ⊂ Λ⊥(A) is a good basis with ‖T̃‖ ≤ L. The matrix A (and q)
defines the function fA(·), and the good basis T is its trapdoor.

• The function fA is defined as fA(e) = Ae mod q, with domain Dn = {e ∈ Zm : ‖e‖ ≤ s
√
m}

and range Rn = Znq . The input distribution is DZm,s, which can be sampled using SampleD with the
standard basis for Zm.

• The trapdoor inversion algorithm SampleISIS(A,T, s,u) samples from f−1
A (u) as follows: first,

choose via linear algebra an arbitrary t ∈ Zm such that At = u mod q (such a t exists for all but an at
most q−n fraction of A, by Lemma 5.1). Then sample v ∼ DΛ⊥,s,−t using SampleD(T, s,−t), and
output e = t + v.

We stress that it is important to sample the input from the discrete Gaussian DZm,s, rather than (say)
sampling from a continuous Gaussian over Rm (with parameter s) and rounding off each coordinate to the
nearest integer. The reason is that the inversion algorithm samples a preimage from the former distribution
(conditioned on a particular output), and the latter distribution differs from the former by non-negligible
statistical distance (see the discussion at the beginning of Section 4).

Theorem 5.9. The algorithms described above give a collection of one-way PSFs if ISISq,m,s
√
m is hard.

Moreover, they give a collection of collision-resistant PSFs if SISq,m,2s
√
m is hard.

Proof. First we note that s ≥ L · ω(
√

logm) ≥ ηε(Λ⊥) for some negligible ε(n) by Lemma 3.1, because
L ≥ ‖T̃‖.

We start with domain sampling. A sample e ∼ DZm,s lands in the domain Dn (except with exponentially
small probability), by Lemma 2.9. Furthermore, for all but an exponentially small fraction of A, fA(e) is
statistically close to uniform over Rn, by Corollary 5.4.

We now show preimage sampling. Because s ≥ ‖T̃‖ · ω(
√

logm), Theorem 4.1 implies that SampleD
samples from a distribution that is statistically close to DΛ⊥,s,−t. Then by the second claim of Lemma 5.2,
SampleISIS samples from the appropriate conditional distribution.

For one-wayness, inverting a random function fA on a uniform output u ∈ Rn = Znq is syntactically
equivalent to solving ISISq,m,s

√
m.

The preimage min-entropy is at least m− 1; this follows immediately from the fact that preimages are
distributed according to a discrete Gaussian (the second claim of Lemma 5.2), and by the min-entropy of the
discrete Gaussian (Lemma 2.10).
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Finally, for collision resistance, a collision e, e′ ∈ Dn for fA implies A(e− e′) = 0 mod q. Because
‖e− e′‖ ≤ 2s

√
m by the triangle inequality and e− e′ 6= 0 because e, e′ are distinct, finding a collision in

a random fA implies solving SISq,m,2s
√
m.

Claw-free pairs. Constructing a collection of claw-free pairs of trapdoor functions is very similar. The
function generator produces (A,T) as above, as well as a uniform w ∈ Znq . It outputs a pair of functions
fA(e) = Ae mod q and fA,w(e) = Ae + w mod q. The domains and input distributions are the same as
above. The preimage sampler for f−1

A (u) works exactly as above, and the preimage sampler for f−1
A,w(u)

samples from the solutions to the system Ae = (u−w) mod q.
Claw-freeness is based on the average-case hardness of ISISq,m,2s

√
m. Given a claw (e, e′) ∈ D2

n for
the pair of functions fA, fA,w, we have A(e− e′) = w mod q. Because ‖e− e′‖ ≤ 2s

√
m by the triangle

inequality, (e− e′) is a solution to the random ISIS instance (q,A,w, 2s
√
m). As above, the functions fA

and fA,w are both collision-resistant assuming the hardness of SISq,m,2s
√
m.

Alternate domains. For some applications, the definition of the domain Dn in terms of the `2 norm
may be inconvenient. In such a case, the domain can also be defined in terms of the `∞ norm as Dn =
{e : ‖e‖∞ ≤ s · ω(

√
logm)} for some arbitrary ω(

√
logm) function. It can be shown (e.g., using the tail

inequality in Section 4.1) that a sample from DZm,s falls in this new domain with overwhelming probability.
(Note, though, that inputs still must be chosen from the Gaussian DZm,s over the integers.)

6 Signature Schemes

The hash-and-sign paradigm for signature schemes, first suggested in [DH76], works as follows: the public
verification key is a trapdoor function f and the signing key is f−1. To sign a message m, first hash m to
some point y = H(m) in the range of a trapdoor function f , then output the signature σ = f−1(y). To verify
(m,σ), simply check that f(σ) = H(m). Bellare and Rogaway [BR93] formalized this notion and showed
that this basic scheme, called Full-Domain Hash (FDH), is existentially unforgeable under chosen-message
attacks when f is a trapdoor permutation and the hash function H is modelled as a random oracle. Many
variations on this theme have been proposed, such as the Probabilistic FDH (PFDH) scheme of Coron [Cor00]
and the Probabilistic Signature Scheme (PSS) of Bellare and Rogaway [BR96]. These were proposed in part
to improve upon the exact security of FDH, which is quite loose when instantiated with a black-box trapdoor
permutation (the success probability of the reduction is a Qhash factor smaller than that of the forger, where
Qhash is the number of hash queries made by the forger).

All of the above schemes were originally intended to be instantiated with trapdoor permutations, such as
RSA. In this section, we show that they can be instantiated securely using our notion of preimage sampleable
functions. In fact, we are even able to give a tight security reduction for FDH by exploiting collision
resistance. This stands in constrast to the best known reductions for FDH using trapdoor permutations: for
trapdoor permutations treated as a black-box, the reduction must lose a factor of Qhash [DR02]; for RSA and
claw-free permutations, the known reductions still lose a factor of Qsign [Cor00, DR02]). In addition, all of
our instantiations are strongly unforgeable.

6.1 Full-Domain Hash Scheme

We start with a version of the FDH signature scheme using trapdoor collision-resistant PSFs; recall that such
a collection can be constructed assuming that SIS is hard on the average for appropriate parameters. In order
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for our security reduction to work, the signer must give out at most one preimage of a given point. This
can be implemented by making the signer stateful, or by using a pseudorandom function (e.g., the random
oracle itself) to implement “repeatable randomness” in a standard way. The PRF is used to generate the
random coins of the preimage sampler, so if the sampler’s randomness complexity is large, this solution may
be impractical and the PFDH scheme below may be a better option. For simplicity, we describe the stateful
version of the scheme.

The scheme is built upon a collection of collision-resistant PSFs given by (TrapGen, SampleDom, SamplePre),
and operates relative to a function H = Hn : {0, 1}∗ → Rn that is modelled as a random oracle (recall that
Dn and Rn are the efficiently-recognizable domain and range, respectively, of the collection for security
parameter n).

• SigKeyGen(1n): let (a, t)← TrapGen(1n), where a describes a function fa and t is its trapdoor. The
verification key is a and the signing key is t.

• Sign(t,m): if (m,σm) is in local storage, output σm. Else, let σm ← SamplePre(t,H(m)), store
(m,σm), and output σm.

• Verify(a,m, σ): if σ ∈ Dn and fa(σ) = H(m), accept. Else, reject.

Proposition 6.1. The scheme described above is strongly existentially unforgeable under a chosen-message
attack.

Proof. It is clear that the scheme is complete, by the properties of the trapdoor collection.
Assume, for contradiction, that there is an adversary A that breaks the existential unforgeability of the

signature scheme with probability ε = ε(n). We construct a poly-time adversary S that breaks the trapdoor
collision-resistant hash function with probability negligibly close to ε. Given an index a describing a function
fa, S runs A on public key a, and simulates the random oracle H and signing oracle as follows. Without loss
of generality, assume that A queries H on every message m before making a signing query on m.

• For every query to H on a distinct m ∈ {0, 1}∗, S lets σm ← SampleDom(1n), stores (m,σm), and
returns fa(σm) to A. (If H was previously queried on m, S looks up (m,σm) and returns fa(σm).)

• Whenever A makes a signing query on m, S looks up (m,σm) in its local storage and returns σm as
the signature.

Now without loss of generality, assume that before outputting its attempted forgery (m∗, σ∗), A queries
H on m∗. When A produces (m∗, σ∗), S looks up (m∗, σm∗) in its local storage and outputs (σ∗, σm∗) as a
collision in fa.

We now analyze the reduction. First, we claim that the view of A in the real chosen-message attack is
identical to its view as provided by S . (This assumes that the trapdoor function properties from Section 5.3.1
are perfect; if they are only statistical, the views are statistically close.) For each distinct query m to H ,
the value returned by S is fa(σm) where σm ← SampleDom(1n); by the “uniform output” property of
the collection, this is identical to the uniformly random value of H(m) ∈ Rn in the real system. Now fix
the value H(m). Then for every signature query on the message m, S returns a single value σm which is
distributed as SampleDom(1n), given fa(σm) = H(m). In the real system, signature queries on m (even
repeated ones) are answered by a single value having the same distribution, by the preimage sampleability of
SamplePre.

Therefore A outputs a valid forgery (m∗, σ∗) with probability (negligibly close to) ε. Because σ∗ is a
valid signature on m∗, we have σ∗ ∈ Dn and fa(σ∗) = H(m∗) = fa(σm∗). It simply remains to check that
σ∗ 6= σm∗ , i.e., that they form a collision in fa. There are two cases to consider:
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1. IfAmade a signature query onm∗, it received back the signature σm∗ . Because (m∗, σ∗) is considered
a forgery, we have σ∗ 6= σm∗ .

2. If A did not make a signature query on m∗, then for the query to H on m∗, S stored a tuple (m∗, σm∗)
for σm∗ ← SampleDom(1n), and returned fa(σm∗) to A. By the preimage min-entropy property
of the hash family, the min-entropy of σm∗ given fa(σm∗) (and the rest of the view of A, which is
independent of σm∗) is ω(log n). Thus, the signature σ∗ 6= σm∗ , except with negligible probability
2−ω(logn).

We conclude that S outputs a valid collision in fa with probability negligibly close to ε.

6.2 Probabilistic FDH

The PFDH scheme replaces the statefulness of FDH with a random “salt” for each signature, and is parame-
terized by the length k of the salt (for simplicity, we can set k = n, though any k = ω(log n) will suffice for
asymptotic security).

• SigKeyGen(1n): let (a, t)← TrapGen(1n), where a describes a function fa and t is its trapdoor. The
verification key is a and the signing key is t.

• Sign(t,m): choose r ← {0, 1}k at random, let σ ← SamplePre(t,H(m‖r)), and output (r, σ).

• Verify(a,m, (r, σ)): if σ ∈ Dn and r ∈ {0, 1}k and fa(σ) = H(m‖r), then accept. Else, reject.

Proposition 6.2. The scheme described above is strongly existentially unforgeable under a chosen-message
attack.

Proof. The proof is almost identical the prior one, so we simply describe the main idea. Security can be
based on either collision-resistance as above (which can be based on the hardness of SIS), or on claw-free
pairs (which can be based on the hardness of ISIS). The essential idea is that repeated signature queries on
the same message m will all have distinct salts r (except with negligible probability Q2

sign/2
k), so the signer

will provide a preimage for independent hash values H(m‖r).

7 Identity-Based Encryption

In this section we construct an identity-based encryption (IBE) system based on the LWE problem, in the
random oracle model. (We also show that a similar system is secure in the plain model, under an “interactive”
assumption relating to LWE.)

As we show in Section 8, there is a variant of Regev’s cryptosystem [Reg05] in which a single lattice
Λ(A) can support the public keys of many users, and a trapdoor for A enables extraction of the secret
key from any well-formed public key. At first glance, it may seem that this is all that is needed for an
identity-based cryptosystem. However, the situation is not so simple. Well-formed public keys in that system
are exponentially sparse, because they correspond to points very close to the lattice Λ(A). It is not at all clear
how a hash function or random oracle could securely map identities to valid public keys.

To remedy this situation, we construct a “dual” of Regev’s cryptosystem, in which the generation and
encryption algorithms are essentially swapped. More specifically, in the dual system, the secret key is a
vector e distributed according to DZm,r, and the corresponding public key is its syndrome u = fA(e) ∈ Znq .
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The encryption algorithm chooses a pseudorandom LWE vector p = AT s + x (for a uniform secret s ∈ Znq
and error vector x ← χm), and uses the syndrome u to generate one more LWE instance p = uT s + x as
a “pad” to hide the message (where x ← χ). Because the public key syndrome u is statistically close to
uniform, the adversary’s view in the dual system is indistinguishable from uniform, under the hardness of
LWE. For the same reason, the scheme (and its identity-based version below) is also anonymous; that is, a
ciphertext hides the identity to which it was encrypted.

The crucial feature of the dual cryptosystem is that its public keys are dense; in fact, every syndrome
u ∈ Znq is a valid public key that has many essentially equivalent decryption keys e ∈ Zmq . We therefore
have all the properties we need to implement an IBE system. Identities are hashed to syndromes in Znq , with
the assurance that every such syndrome is a well-defined public key for the dual scheme. Furthermore, a
trapdoor for A allows a trusted authority to efficiently sample a secret key e corresponding to any syndrome
u, under the same distribution as in the dual cryptosystem.

We first describe the dual cryptosystem and prove that it is secure based on the hardness of LWE. We
then show how to use this to construct an IBE system.

7.1 Dual Cryptosystem

Our public-key dual cryptosystem is defined below. It is parameterized by some r ≥ ω(
√

logm), which
specifies the discrete Gaussian distribution DZm,r from which secret keys are chosen. As in Section 8.1, all
users share a common matrix A ∈ Zn×mq (an implicit input to all algorithms) chosen uniformly at random,
which is the index of the function fA(e) = Ae mod q defined in Section 5.3. (Each user may also generate
her own matrix A, included in the public key). The trapdoor for A will not be needed here, and is only used
in the IBE below. All operations are performed over Zq.

• DualKeyGen: Choose an error vector e← DZm,r (i.e., the input distribution to fA), which is the secret
key. The public key is the syndrome u = fA(e).

• DualEnc(u, b): to encrypt a bit b ∈ {0, 1}, choose s← Znq uniformly and p = AT s + x ∈ Zmq , where
x← χm. Output the ciphertext (p, c = uT s + x+ b · bq/2c) ∈ Zmq × Zq, where x← χ.

• DualDec(e, (p, c)): compute b′ = c− eTp ∈ Zq. Output 0 if b′ is closer to 0 than to bq/2c modulo q,
otherwise output 1.

The above cryptosystem can be extended to encrypt messages of length k = poly(n) bits, with cipher-
texts of Õ(m+ k) bits and public keys of size Õ(kn) bits. The idea is to include k independent syndromes
u1, . . . ,uk in the public key, and to encrypt to each of them using the same s and p = AT s+x. (This is sim-
ilar to an amortized construction from [PVW07] for Regev’s original system, and to the IBE from [BGH07]).
For k = Ω(m), this yields amortized encryption/decryption time of Õ(n) bit operations per message bit, and
ciphertext expansion factor of O(log n). It is also possible to securely encrypt Ω(log n) bits per syndrome
under essentially the same assumption on LWE, which yields a ciphertext expansion factor of O(1). (These
measures of complexity are asymptotically the same as those achieved in [PVW07].)

Theorem 7.1. Let q ≥ 5r(m + 1), α ≤ 1/(r
√
m+ 1 · ω(

√
log n)) and χ = Ψ̄α, and m ≥ 2n lg q. Then

the above system is CPA-secure and anonymous, assuming that LWEq,χ is hard.
Furthermore, for all but a negligible fraction of shared matrices A, the distribution of public keys

generated by DualKeyGen is statistically close to uniform over Znq .
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Proof. The claim on the distribution of public keys follows directly from Corollary 5.4.
We show that DualDec is correct with overwhelming probability (over the randomness of DualKeyGen

and DualEnc). Consider a ciphertext

(p, c) = (AT s + x, eTAT s + x+ b · bq/2c)

of a bit b under a public key u = Ae. The decryption algorithm computes c− eTp = x− eTx + b · bq/2c,
so it outputs b if x − eTx is at distance at most (say) q/5 from 0 (modulo q). By an essentially identical
argument as in Lemma 8.2, this occurs with overwhelming probability for our choice of q and α.

Semantic security follows almost immediately from the presumed hardness of LWE. We claim that for a
ciphertext (p, c) of either b = 0 or 1, the entire view (A,p,u, c) of the adversary is indistinguishable from
uniform, assuming hardness of LWEq,χ. Indeed, for almost all fixed choices of A and because m ≥ 2n lg q,
the public key syndrome u = fA(e) is statistically close to uniform by Theorem 5.9. Then the view
(A,p = AT s + x,u, c = uT s + x+ b · bq/2c) simply consists of m+ 1 samples from the LWE distribution
As,χ (for s ← Znq ), which are indistinguishable from uniform assuming the hardness of LWEq,χ. For
anonymity, it is enough to see that a ciphertext (p, c) alone is indistinguishable from uniform, and as such, it
computationally hides the particular public key u under which it was generated.

The proof easily generalized to the multi-bit extension, because each syndrome ui is independent and
statistically close to uniform (for almost all choices of A).

7.2 IBE System

Our IBE system uses a random orace H : {0, 1}∗ → Znq that maps identities to public keys of the dual
cryptosystem, which is instantiated with a Gaussian parameter r ≥ L·ω(

√
logm) so as to guarantee preimage

sampleability as proved in Theorem 5.9. As with the full-domain hash signature scheme from Section 6, we
describe a stateful secret key extractor (to prevent a re-querying attack), which can be made stateless via
pseudorandom functions in a standard way.

• IBESetup(1n): generate a trapdoor function fA with trapdoor T, as described in Section 5.3.2. The
master public key is A, which is taken as the shared matrix for the dual cryptosystem, and the master
secret key is T.

• IBEExtract(A,T, id): if the pair (id, e) is in local storage (from a prior query on id), then return e.
Otherwise, let u = H(id) and choose a decryption key e← f−1

A (u) using the preimage sampler with
trapdoor T. Store (id, e) locally and return e.

• IBEEnc(A, id, b): to encrypt a bit b ∈ {0, 1} to identity id, let u = H(id) ∈ Znq , and output a
ciphertext (p, c)← DualEnc(u, b).

• IBEDec(e, (p, c)): Output DualDec(e, (p, c)).

A multi-bit IBE follows in the same way from the multi-bit extension of the dual cryptosystem, with the
same measures of complexity. Identities are simply mapped by H to multiple uniform syndromes in Znq , one
for each bit of the message.

Theorem 7.2. Suppose that Theorem 7.1 holds, i.e., the dual cryptosystem is CPA-secure and anonymous in
the standard model, and that its public keys are statistically close to uniform over Znq for all but a negligible
fraction of shared matrices A.

Then the IBE system described above is anonymous and secure in the random oracle model.
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Proof. First we show completeness. Note that for any identity id and its syndrome u = H(id), IBEExtract
samples from f−1

A (u) and produces a secret key e whose distribution is statistically close to that of a secret
key for the public key u in the dual cryptosystem. Therefore IBEDec decrypts correctly as long as DualDec
does. Furthermore, the system is anonymous because IBEEnc simply returns the output of DualEnc.

We now show semantic security in the random oracle model. Let A be a PPT adversary that attacks the
IBE scheme and has advantage ε using Qhash distinct queries to H . We will construct an adversary S that
attacks the dual cryptosystem by simulating the view of A, and has advantage negligibly close to ε/Qhash.

The adversary S works as follows. On input a shared matrix A ∈ Zn×mq and a public key u∗ ∈ Znq for
the dual cryptosystem, S chooses an index i← [Qhash] uniformly at random and simulates the view of A as
follows:

• Hash queries: on A’s jth distinct query idj to H , do the following: if j = i, then locally store
the tuple (idj ,u∗,⊥) and return u∗ to A. Otherwise for j 6= i, generate a public/secret key pair
(uj , ej)← DualKeyGen, locally store the tuple (idj ,uj , ej), and return uj to A.

• Secret key queries: when A asks for a secret key for the identity id, assume without loss of generality
that A already queried H on id. Retrieve the unique tuple (id,u, e) from local storage. If e = ⊥, then
output a random bit and abort, otherwise return e to A.

• Challenge ciphertext: whenA produces a challenge identity id∗ (distinct from all its secret key queries)
and messages m0,m1, assume without loss of generality thatA already queried H on id∗. If id∗ 6= idi,
i.e., if the tuple (id∗,u∗,⊥) is not in local storage, then output a random bit and abort. Otherwise,
relay the messages m0,m1 to the challenger, receive a challenge ciphertext c∗, and return c∗ to A.

When A terminates with some output, S terminates with the same output.
We now analyze the reduction. By a standard argument, the probability that S does not abort during the

simulation is 1/Qhash (this is proved by considering a game in which S can answer all secret key queries,
so that the value of i is perfectly hidden from A). Conditioned on S not aborting, we claim that the view it
provides to A is statistically close to the view of the real IBE system. Indeed, the answers to the hash queries
are independent public keys of the dual cryptosystem, which are statistically close to uniform (for almost all
A) by assumption. Furthermore, as we have already seen, the answers to the secret key queries in the real
system are statistically close to those generated by DualKeyGen. Finally, we observe that S’s advantage is
the same as A’s, conditioned on S not aborting.

Interactive LWE assumption. Instead of an analysis in the random oracle model, we can also construct an
IBE and prove its security under an “interactive” assumption about the hardness of LWE in the presence of
a signing oracle for the (stateful) FDH signature scheme from Section 6. A similar “interactive quadratic
residuosity assumption” was used for the IBE of [BGH07]. We sketch the assumption and proof of security
here.

The interactive LWEq,χ problem is this: the input is a matrix A ∈ Zn×mq chosen uniformly at random, a
vector p ∈ Zmq , a hash function H : {0, 1}∗ → Znq , and access to an oracle that, on input z, returns a sample
from f−1

A (H(z)) (the same value is returned for repeated queries on the same z). The goal is to distinguish
whether p is either an LWE instance or uniform, i.e., between the case that p = AT s + x for some s← Znq
and x← χm, and the case that p← Zmq is uniform. When H is modelled as a random oracle, the interactive
LWE problem is hard as long as the standard LWE problem is hard.

The main idea for proving security of the IBE under the interactive assumption is as follows: the simulator
is given A, p, hash function H , and access to the signing oracle. It simulates an IBE system having public
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parameter A and H , and answers secret key queries by simply querying the signing oracle. When given the
challenge identity id∗ and challenge message m0,m1, the simulator additionally queries the signing oracle
on id∗ and obtains a secret key e∗. It then constructs a challenge ciphertext by encrypting a random mb

“with the secret key e∗.” Specifically, the ciphertext is made up of p and a “pad” eTp ∈ Zq that hides the
message mb in the standard way. If p is uniform, it can be shown that the pad is essentially uniform and
independent of the other variables, thus the adversary has no advantage. If p = AT s + x is an LWE instance,
the ciphertext is distributed as in the real IBE system. Note that the simulated pad eTp = uT s + eTx is
correlated with the length ‖x‖; therefore, the encryption algorithm in the real IBE system will also choose a
pad using an error distribution whose standard deviation is determined by ‖x‖.

The full proof of security is somewhat subtle, and is more convenient when the error terms in the
LWE problem are continuous quantities, not discrete (this is actually the main form of the problem studied
in [Reg05]). When “encrypting with the secret key,” the simulator also needs to add a small amount of
continuous Gaussian error to the pad eTp, in order to ensure that its overall distribution is close to a
continuous Gaussian; this technique is also used in the main reduction of [Reg05]. We defer the details.

8 Trapdoors for Learning with Errors

Here we demonstrate some trapdoor techniques for the learning with errors (LWE) problem [Reg05] and
certain cryptosystems based upon it. Some of these techniques have been applied in a concurrent work of
Peikert, Vaikuntanathan, and Waters [PVW07] to construct efficient and universally composable oblivious
transfer protocols based on LWE.

8.1 Variant Cryptosystem

We start with a slight variant of Regev’s cryptosystem [Reg05], which differs only in the encryption algorithm.
The original algorithm chooses a uniformly random binary vector e ∈ {0, 1}m (corresponding to a random
subset of {1, . . . ,m}) and computes the corresponding subset sum Ae of the columns of A ∈ Zn×mq . Our
encryption algorithm instead chooses a random vector e from the discrete Gaussian DZm,r over the integer
lattice Zm (using the SampleD algorithm from Section 4), and computes the syndrome Ae. The particular
value of the Gaussian parameter r will be a parameter of the scheme, and can be chosen based on the needs
of the particular application.

We define an optimized version of the cryptosystem (also described in [Reg05]) in which all users share
a matrix A ∈ Zn×mq chosen uniformly at random by some trusted source. All operations are performed over
Zq.

• LWEKeyGen: choose a secret decryption key s ← Znq uniformly at random. The public key is the
vector p = AT s + x ∈ Zmq , where each xi is chosen independently from the error distribution χ for
i ∈ [m].

Note that the p component of the public key can be viewed as a uniform lattice point AT s ∈
Λ(A) mod q, perturbed by some (small) random error vector x.

• LWEEnc(p, b): to encrypt a bit b ∈ {0, 1}, choose a vector e ∈ Zm from the distribution DZm,r
(using the SampleD algorithm with the standard basis for Zm), and output the ciphertext (u, c) =
(Ae,pTe + b · bq/2c) ∈ Zn+1

q .
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• LWEDec(s, (u, c)): compute b′ = c− sTu ∈ Zq. Output 0 if b′ is closer to 0 than to bq/2c modulo q,
otherwise output 1.

Proposition 8.1. For parameters r, q, m, and α satisfying the hypotheses of Lemmas 8.2 and 8.4, the
cryptosystem above is CPA-secure, assuming that LWEq,Ψ̄α is hard.

One possible choice of parameters is to let m = 6n lg n, r = logm, q ∈ [n
2

2 , n
2] be prime, and

α = 1/(
√
m · log2m). It can be verified that these choices satisfy the needed hypotheses. In addition, we

have q · α ≥ n for all sufficiently large n, so Proposition 2.11 implies that LWEq,Ψ̄α is hard unless there are
poly-time quantum algorithms for approximating GapSVP and SIVP to within Õ(n1.5) factors.

Proof. The proof is based on a similar line of reasoning as in prior works [AD97, Reg04b, Reg05]. We
first show in Lemma 8.2 that the decryption algorithm is correct with overwhelming probability over the
randomess of LWEKeyGen and LWEEnc.

We prove semantic security in three steps: first, by assumption on LWEq,χ, it is immediately apparent
that A′ = (A,pT ) ∈ Z(n+1)×m

q , where p is the public key generated by LWEKeyGen, is pseudorandom
(i.e., indististinguishable from uniform). Second, we describe below the notion of “messy” public keys,
whose defining property is that the encryption algorithm statistically hides the message bit when encrypting
under such keys. Lastly, in Lemma 8.3 we describe an explicit geometric condition that makes A′ messy,
and in Lemma 8.4 we show that a uniformly random choice of A′ meets this condition with overwhelming
probability. (The last step is the novel part of our proof, and is the only part that uses our modified encryption
algorithm.)

Putting everything together, we see that no efficient adversary can distinguish between public keys gener-
ated by LWEKeyGen and those that are messy. Therefore encrypting under keys generated by LWEKeyGen
hides the encrypted bit computationally.

Lemma 8.2 (Completeness). Let q ≥ 5rm, let α ≤ 1/(r
√
m · ω(

√
log n)), and let χ = Ψ̄α. Then LWEDec

decrypts correctly with overwhelming probability (over the random choices of LWEKeyGen and LWEEnc).

Proof. Consider some secret key s ∈ Znq and its public key p = AT s + x, for x ← χm. Now consider a
ciphertext

(u, c) = (Ae,pTe + b · bq/2c) = (Ae, sTAe + xTe + b · bq/2c)
of a bit b, where e← DZm,r. The decryption algorithm computes c− sTu = xTe + b · bq/2c, so it outputs
b if xTe is at distance at most (say) q/5 from 0 (modulo q).

By Lemma 2.9, we have ‖e‖ ≤ r
√
m (except with exponentially small probability). Now by definition

of χ = Ψ̄α, we have xi = bq · yie mod q, where the yi are independent normal variables with mean 0 and
variance α2. Then ‖x− y‖ ≤

√
m/2, and by the Cauchy-Schwarz inequality, xTe is at most rm/2 ≤ q/10

away from q · (yTe mod 1). Therefore it suffices to show that
∣∣yTe∣∣ < 1/10 with overwhelming probability.

Because the yi are independent, yTe is distributed as a normal variable with mean 0 and standard
deviation ‖e‖ · α ≤ r

√
m · α ≤ 1/ω(

√
log n). Therefore by the tail inequality on normal variables, the

probability that
∣∣yTe∣∣ > 1/10 is negligible, and we are done.

Message-lossy (“messy”) public keys. Let A ∈ Zn×mq be a fixed common matrix and p be a fixed public

key, and let A′ ∈ Z(n+1)×m
q be constructed from A and p as above. Define δ = δ(p) to be the statistical

distance between the uniform distribution over Zn+1
q and the distribution of A′e = (Ae,pTe) ∈ Zn+1

q ,
where e← DZm,r. Then

∆(LWEEnc(p, 0), LWEEnc(p, 1)) ≤ 2δ,
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because both LWEEnc(p, 0) and LWEEnc(p, 1) are within δ(pk) of uniform. When δ is negligibly small, we
say that p is a “messy” (message-lossy) public key. Of course, the correctness of LWEDec implies that the
public keys p generated by LWEKeyGen typically have large δ(p).

Messy keys (though not named as such) have played a crucial role in the security proofs for prior
lattice-based cryptosystems [AD97, Reg04b, Reg05]. In those works it was sufficient to show that most
keys are messy, without necessarily identifying their particular characteristics. This was always done via
non-constructive probabilistic arguments.

In the proof of security for the oblivious transfer protocol in [PVW07], the simulator needs to identify
messy keys efficiently (with the help of a trapdoor). This calls for an explicit condition that identifies such
keys. The following lemma shows that two conditions together imply messiness: first, the columns of A′

should generate all of Zn+1
q ; second, the modular lattice Λ⊥(A′) should have small smoothing parameter,

which is the case if Λ(A′) has large minimum distance λ∞1 in the `∞ norm.

Lemma 8.3 (Messy Sufficient Condition). Let A, p, and A′ be as above, and suppose that the columns of
A′ generate Zn+1

q . Then for any ε ∈ (0, 1
2) and any Gaussian parameter r ≥ ηε(Λ⊥(A′)) used by LWEEnc,

we have δ(p) ≤ 2ε.

In particular, if r ≥ q · ω(
√

logm)/λ∞1 (Λ(A′)), then p is messy under LWEEnc.

Proof. The first claim is a consequence of Lemma 5.2 (for dimension n + 1 instead of n), which directly
implies that δ(p) ≤ 2ε. The second claim follows directly from Lemma 2.6 and the duality between Λ⊥ and
Λ.

Lemma 8.4 (Density of Messy Keys). Let m ≥ 2(n+ 1) lg q and let r ≥ ω(
√

logm). Then for all but an at
most 2q−n fraction of (A,p), the public key p is messy for the cryptosystem with common matrix A.

Proof. Let A′ ∈ Z(n+1)×m
q be comprised of A and p as above. By Lemma 5.1, the columns of A′

generate Zn+1
q for all but an at most q−(n+1) < q−n fraction of all A′. Likewise, by Lemma 5.3, we

have λ∞1 (Λ(A′)) ≥ q/4 for all but an at most q−n fraction of all A′. Therefore, for such A′ and for
r ≥ ω(

√
logm), Lemma 8.3 implies that p is a messy key.

8.2 Identifying Messy Keys Efficiently

Here present an algorithm that identifies (most) messy keys for the above cryptosystem, using a trapdoor for
the common matrix A. We start with a high-level overview of the intuition behind the algorithm.

Consider a uniformly random shared matrix A ∈ Zn×mq and an arbitrary public key p ∈ Zmq that together
form A′ as above. Recall that p is messy if: (1) the columns of A′ generate Zn+1

q , and (2) the minimum
distance λ∞1 (Λ(A′)) in `∞ norm is large enough. The first condition is true if and only if the rows of A′ are
linearly independent over Zq, which is easy to check. The second condition can be checked using a trapdoor
for A in the following way: first, we know that with high probability the lattice Λ = Λ(A) has large minimum
distance λ∞1 . Adjoining the vector p to Λ yields the lattice Λ′ = Λ(A′), which still has large minimum
distance λ∞1 as long as every nonzero multiple k · p is far from Λ in `∞ norm, for k ∈ {1, . . . , q − 1}. Using
techniques of Aharonov and Regev [AR05] (extended to arbitrary `p norms by Peikert [Pei07]), it can be
efficiently checked that each of the multiples k · p is far from Λ (in `∞ norm), using samples from a discrete
Gaussian over Λ∗ = Λ⊥(A)/q. The Gaussian sampling algorithm with a short full-rank set of vectors in
Λ⊥(A) can be used to produce such samples efficiently.

The actual algorithm and its analysis depend crucially on the relationship between the Gaussian parameter
r used in encryption and the Gaussian parameter s of the distribution over Λ∗. The smaller s is, the smaller
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we can make r and still correctly identify messy keys. In turn, a smaller value of r means that we can use a
larger LWE error parameter α and still maintain correctness of the cryptosystem. Finally, a larger value of α
corresponds to tighter approximation factors for worst-case lattice problems under the quantum reduction
of [Reg05].

We remark that we only know how to identify messy keys for the single-bit cryptosystem that uses
one public key vector p ,as opposed to the more efficient multi-bit system that uses multiple vectors pi,
constructed in [PVW07]. The reason is in the multi-bit system, the key is messy if the minimum distance
remains large after adjoining all the pis to the common lattice Λ(A). Testing for this condition (at least
naively) seems to require checking all of the exponentially-many integer combinations of the pis.

We start by recalling the algorithm of [AR05] that distinguishes between points that are far from a lattice
Λ and those that are close to it, given access to Gaussian samples over the dual lattice Λ∗. The meanings of
“far” and “close” are determined by the Gaussian parameter s.

Proposition 8.5 ([AR05, Pei07]). There is a deterministic polynomial-time oracle machine VO that, given a
full-rank lattice Λ ⊂ Rm (specified by an arbitrary basis) and a point x ∈ Rm, and given access to an oracle
O that samples from the distribution DΛ∗,s for some s > 0, has the following behavior:

• If dist∞(x,Λ) ≤ 1/(10s
√
m), then V outputs “close,” except with probability 2−Ω(m).

• If dist∞(x,Λ) ≥
√

logm/s, then V outputs “far,” except with probability 2−Ω(m).

The probabilities are taken over the samples produced by the oracle.

Figure 1 defines an algorithm called IsMessy that identifies messy public keys. It has two essential
properties (putting aside some very rare exceptional cases):

• IsMessy outputs “messy” on an overwhelming fraction of all public keys p.

• If IsMessy outputs “messy” on a particular public key p, then p is indeed messy.

Note that IsMessy has one-sided error; it might output “not sure” on some public keys p that are actually
messy. Nevertheless, most messy keys are identified as such, and this is good enough for the oblivious transfer
application in [PVW07].

Before analyzing IsMessy, let us define GOOD to be the set of common matrices A ∈ Zn×mq whose
columns generate Znq (i.e., the rows are linearly independent over Zq) and λ∞1 (Λ(A)) ≥ q/4. By Lemmas 5.1
and 5.3, all but an at most 2q−n fraction of matrices A are in GOOD when m ≥ 2(n+ 1) lg q.

The next two lemmas establish the two main properties of the IsMessy algorithm. We first show that for
all A ∈ GOOD, IsMessy outputs “messy” (with overwhelming probability) on almost all public keys p.

Lemma 8.6. Let m ≥ 2(n+ 1) lg q, and A ∈ GOOD. Then for all but an at most(
5
√

logm
q · s

)m
fraction of all p ∈ Zmq , IsMessyO(A,p) outputs “messy” with probability 1− 2−Ω(m).
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The input to the oracle algorithm IsMessyO is a common matrix A ∈ Zn×mq and a public key p ∈ Zmq ,
as well as access to an oracle O that samples from DΛ∗,s (where Λ = Λ(A), so Λ∗ = Λ⊥(A)/q) for
some parameter s where 1/q ≤ s ≤ 1.

1. Construct A′ ∈ Z(n+1)×m
q from A and p as before. Check that the columns of A′ generate Zn+1

q ,
i.e., that that rows of A′ are linearly independent over Zq. If not, output “not sure.”

2. For each k ∈ {1, . . . , q − 1}, run VO(Λ, k · p mod q).

If every run of V outputs “far,” then output “messy.” Otherwise, output “not sure.”

Note that the oracleO is used only when V is called as a subroutine. Typically,O would be implemented
by the SampleD algorithm using a good basis T of Λ⊥(A), for a parameter s ≥ ‖T̃‖/q · ω(

√
logm)

(note that 1/q ≤ s ≤ 1 for non-trivial T). This affects the output probabilities of IsMessy by only a
negligible amount.

Figure 1: The IsMessy algorithm.

Proof. We proceed by a counting argument. Let A′ be as in the IsMessy algorithm. Because A ∈ GOOD,
the number of p such that the rows of A′ are linearly dependent (over Zq) is at most qn ≤ 2m. From now on,
suppose the rows of A′ are linearly independent.

Let Λ = Λ(A), and let C be the open `∞ cube in Rm of radius
√

logm/s. Let Z = (Λ + C)∩Zmq be the
set of integer points in Zmq that are within `∞ norm less than

√
logm/s of Λ. By Proposition 8.5, IsMessy

outputs “messy” with probability 1− 2−Ω(m) on any p ∈ Zmq not contained in

B =
⋃

k∈[q−1]

(Z · k−1 mod q).

We bound the size of B.
The number of integer points in Λ mod q is bounded from above by qn, and the number of integer points

in any translate of C is bounded from above by (2
√

logm/s)m. Therefore the total number of points in B at
most

qn+1 ·
(

2
√

logm
s

)m
≤
(

4
√

logm
s

)m
.

We conclude that IsMessy outputs “messy” with probability 1− 2−Ω(m) on all but at most

2m + (4
√

logm/s)m ≤ (5
√

logm/s)m

values of p ∈ Zmq for all sufficiently large m. This completes the proof.

We now show, assuming the Gaussian parameter r used by LWEEnc is large enough, that IsMessy is
indeed correct when it declares a key to be messy.

Lemma 8.7. Let r ≥ q · s
√
m · ω(

√
logm) for some arbitrary ω(

√
logm) function. There there is a

negligible function ε(m) such that the following holds.
For any A ∈ GOOD and public key p such that δ(p) > 2ε (under LWEEnc with parameter r),

IsMessyO(A,p) outputs “messy” with probability at most 2−Ω(m).
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Proof. Let A′ ∈ Z(n+1)×m
q be constructed from A and p as above. First, by the fact that Λ⊥(A′)∗ =

Λ(A′)/q and Lemma 2.6, there exists a negligible ε(m) such that

r ≥ 10s
√
m · ηε(Λ⊥(A′)) · λ∞1 (Λ(A′)) (8.1)

for all sufficiently large m.
Now suppose δ(p) > 2ε. By the contrapositive of Lemma 8.3, either the rows of A′ are linearly

dependent over Zq or r < ηε(Λ⊥(A′)). In the former case, IsMessy always outputs “not sure,” so suppose
the latter case is true. Then by (8.1), we obtain

λ∞1 (Λ′) <
1

10s
√
m
.

Now because A ∈ GOOD, we have λ∞1 (Λ(A)) ≥ q/4 > λ∞1 (Λ′). Then it must be the case that for
some integer k,

dist∞(k · p,Λ) = λ∞1 (Λ′).

Furthermore, because q · p ∈ Λ, such k must be nonzero modulo q, and the above distance is determined by
k mod q. We conclude that there must be some k ∈ {1, . . . , q − 1} such that

dist∞(k · p,Λ) ≤ 1
10s
√
m
.

By Proposition 8.5, V outputs “close” for that choice of k, except with probability 2−Ω(m), and the proof
is complete.

8.3 Extracting Secret Keys

We also show that it is possible to extract the secret key s from a properly-generated public key p = AT s+x
for Regev’s cryptosystem, using a trapdoor for the shared matrix A. Extracting secret keys is equivalent to
solving a bounded-distance (unique) decoding problem on the lattice Λ(A). Whereas distinguishing messy
keys from properly-generated ones is a decision problem, extracting the secret key from a public key is
essentially the correspoding search problem.

Building on the techniques of Aharonov and Regev [AR05], Liu, Lyubashevsky, and Micciancio [LLM06]
gave a deterministic “hill-climbing” algorithm that solves the bounded-distance decoding problem on any
lattice, given samples from a discrete Gaussian over the dual lattice. Their algorithm was generalized to all `p
norms in [Pei07].

Proposition 8.8 ([LLM06, Pei07]). There is a deterministic poly-time oracle algorithm that, given:

• access to an oracle that samples from the distribution DΛ∗,s for some s > 0,

• a basis B for a full-rank lattice Λ = L(B) ⊂ Rm such that λ∞1 (Λ) ≥ 10
√

logm/s,

• a point x ∈ Rm such that dist∞(x,Λ) ≤ 1/(10s
√
m), and

outputs the unique y ∈ Λ closest (in `∞ norm) to x.

As we have already seen, for a random lattice Λ = Λ(A) with Λ∗ = Λ⊥(A)/q, we can implement the
oracle in the above lemma for any s = L/q · ω(

√
logm) using the SampleD algorithm with any good basis

T of Λ⊥(A) such that ‖T̃‖ ≤ L.
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Lemma 8.9. Let s = L/q · ω(
√

logm) as above, and let χ = Ψ̄α for α ≤ 1/(q · s
√
m · ω(

√
logm)). Let

Λ = Λ(A), and let p denote a public key produced by LWEKeyGen. Then with overwhelming probability
over the choice of A and the randomness of LWEKeyGen,

• λ∞1 (Λ) ≥ 10
√

logm/s, and

• dist∞(p,Λ) ≤ 1/(10s
√
m)

In particular, by Proposition 8.8 one can efficiently extract the secret key s from the public key p using a
good basis T of Λ⊥(A) such that ‖T̃‖ ≤ L.

Proof. By Lemma 5.3, for all but an at most q−n fraction of all A, we have λ∞1 (Λ) ≥ q/4 ≥ 10
√

logm/s
for sufficiently large m.

Now say p = AT s + x where x← χm is the noise term. By the tail inequality on normal variables and
the definition of χ = Ψ̄α, each coordinate xi of x is at distance at most q · α · g(m) from 0 modulo q, with
overwhelming probability for any g(m) = ω(

√
logm). Therefore for an appropriate choice of g(m) we get

dist∞(p,Λ) ≤ 1/(10s
√
m).

Remarks. We point out that Lemma 8.9 applies to both Regev’s original scheme and our variant, as it
depends only on the distribution of public keys, and not on the distribution of the randomness used in
encryption.

We also remark that the above results imply another kind of trapdoor function. Define f ′A(s,x) =
AT s + x, where s← Znq and x← χm is the input distribution. Then for almost all A, the function f ′A has
the following properties: (1) with overhwhelming probability over the input s,x, the output fA(s,x) has a
unique preimage, in the sense that all other preimages are exponentially unlikely under the input distribution;
(2) the unique preimage can be recovered with an appropriate trapdoor for A; (3) assuming that LWE is hard,
f ′A is hard to invert, and (A, f ′A(s,x)) is indististinguishable from uniform over the choice of A, s, x.

9 Hardness of SIS and ISIS

The results of this section are very similar to the main worst-case to average-case reduction of Micciancio and
Regev [MR07] (which in turn inherits from the original work of Ajtai [Ajt96]). The main difference is the
use of our discrete Gaussian sampling algorithm to simplify and slightly tighten the reduction. The discrete
sampling algorithm avoids certain complications associated with using continuous Gaussian distributions,
and the looseness that comes with “rounding off” real-valued samples to nearby lattice points. The net effect
is that our reduction works for values of the modulus q = Õ(n) that are almost linear, versus Õ(n2) as shown
in [MR07].

We start by introducing a worst-case lattice problem that acts as an intermediary between our average-case
decoding problem and more standard problems like SIVP and GapSVP. The new problem is similar to the
intermediate incremental guaranteed distance decoding (IncGDD) problem defined in [MR07], but has a
somewhat simpler formulation.

Definition 9.1 (Incremental Independent Vectors Decoding). An input to IncIVDφ
γ,g is a tuple (B,S, t),

where B is a basis for a full-rank lattice in Rn, S ⊂ L(B) is a full-rank set of lattice vectors such that
‖S‖ ≥ γ(n) · φ(B), and t ∈ Rn is a target point. The goal is to output a lattice vector v ∈ L(B) such that
‖v − t‖ ≤ ‖S‖/g. (The norm ‖·‖ is arbitrary, and is implicitly taken to be the Euclidean `2 norm unless
otherwise specified.)
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As shown in [MR07], the IncGDD problem is as hard as approximating several other worst-case problems
(such as SIVP), via standard worst-case to worst-case reductions. All of these reductions can easily be
adapted to work for our problem IncIVD as well. Therefore it will suffice to show that IncIVD reduces to the
average-case problem SIS or ISIS for appropriate choices of parameters.

Before stating the main theorem, we observe that SIS can be viewed essentially as a special case of
ISIS. An instance of ISIS is given by (q,A,u, β) where A ∈ Zn×mq and u ∈ Znq are uniformly random, and
the goal is to find an e ∈ Zm such that Ae = u mod q and ‖e‖ ≤ β. Note that u 6= 0 except with q−n

probability, so without loss of generality we can assume that a valid solution e 6= 0. Now by instead always
setting u = 0 and explicitly requiring e 6= 0, we get exactly the homogeneous SIS problem. Therefore, in
the reduction we will choose u ∈ Znq to be either uniform or 0 as appropriate, and the analysis will only use
the hypothesis that the solution e 6= 0.

Theorem 9.2. For any g(n) > 1 and negligible ε(n), there is a probabilistic poly-time reduction from solving
IncIVDηε

γ,g in the worst case for γ(n) = g(n) · β(n) ·
√
n to solving either SISq,m,β or ISISq,m,β on the

average with non-negligible probability, for any q(n) ≥ γ(n) · ω(
√

log n) and m(n), β(n) = poly(n).

Using analysis techniques of [Pei07], the theorem can be generalized to solve IncIVDηε
γ,g in any `p norm,

1 ≤ p <∞, for an approximation factor γ(n) = cp · g(n) ·β(n) ·n1/p where cp is a fixed constant depending
only on p. (For p =∞, the proof goes through with c∞ = O(

√
log n).)

Proof of Theorem 9.2. Suppose that oracle O solves either ISISq,m,β or SISq,m,β on the average with non-
negligible probability (the difference between the two problems is limited to the first step of the reduction).
The reduction that solves IncIVDηε

γ,g works as follows: on input (B,S, t),

1. (Setup.) Choose an index j ← [m] and α← {−β, . . . ,−1, 1, . . . , β} uniformly at random.

Let cj = t · q/α ∈ Rn, and let ci = 0 ∈ Rn otherwise for i ∈ [m].

For reducing to ISIS, choose u← Znq uniformly and independently.
For reducing to SIS, let u = 0 ∈ Znq .

Let xj = u · α−1 mod q, and xi = 0 otherwise. Define the matrix X = [x1, . . . ,xm] ∈ Zn×mq .

Finally, using the procedure from Lemma 2.1, convert (B,S) into a basis T of L(B) such that
‖T̃‖ ≤ ‖S̃‖ ≤ ‖S‖.

2. (Sample lattice points.) Let s = ‖S‖ · q/γ. For each i ∈ [m], let yi ← DL(B),s,ci , where the sample is
produced using SampleD(T, s, ci). Define the matrix Y = [y1, . . . ,ym] ∈ Rn×m.

Let A = (B−1Y + X) mod q.

3. (Invoke oracle and combine lattice points.) Invoke oracle O on (q,A,u, β), yielding e ∈ Zm. Output
the vector v = Ye/q.

It is apparent that the reduction runs in time polynomial in n and the size of (B,S, t). The correctness of
the reduction (with non-negligible probability) will follow from the following claims.

Claim 9.3. For any values of j, α chosen by the reduction, the distribution of A is statistically close to
uniform over Zn×mq . In particular,O outputs a nonzero solution e ∈ Zm (i.e., Ae = u mod q with ‖e‖ ≤ β)
such that ej = α with non-negligible probability.
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Proof. We have s = ‖S‖ ·q/γ ≥ ‖T̃‖ ·ω(
√

log n), so by Theorem 4.1, the distribution sampled by SampleD
is statistically close to DL(B),s,ci .

By hypothesis, we also have ‖S‖ ≥ γ · ηε(L(B)), so s ≥ q · ηε(L(B)) = ηε(qL(B)). Therefore by
Lemma 2.8, yi mod qL(B) is statistically close to uniform over L(B)/qL(B). Hence ai = (B−1yi +
xi) mod q is statistically close to uniform over Zn/(qZ)n = Znq . Because the yi are independent and
m = poly(n), the entire matrix A is statistically close to uniform by the triangle inequality. Therefore O
outputs a valid solution e with non-negligible probability.

Finally, by the discussion above we may assume that the solution e 6= 0, so e has some nonzero coordinate
ek ∈ {−β, . . . ,−1, 1, . . . , β} for some k ∈ [m]. Because O’s input is statistically close to uniform for
any values of α, j chosen by the reduction, the probability that j = k and α = ek is negligibly close to
1/(2βm) = 1/poly(n). The claim follows.

Claim 9.4. If e is a valid solution and ej = α, then the output v ∈ L(B).

Proof. It suffices to show that B−1Ye ∈ qZm. By definition, B−1Y = A − X mod q, so it suffices to
show that Ae = Xe mod q. Indeed, if ej = α then Xe = α · xj = u mod q. If e is a valid solution, then
Ae = u mod q as well, as desired.

Claim 9.5. If e is a valid solution and ej = α, then ‖v − t‖ ≤ ‖S‖/g(n) with overwhelming probability.

Proof. If ej = α, we have t = Ce/q where C = [c1, . . . , cm]. Now for each yi, let wi = yi mod qL(B)
and define W = [w1, . . . ,wm]. Then conditioned on any fixed value of wi, yi is distributed as wi +
DqL(B),s,ci−wi

. The input to the oracle O depends only on W and X. Therefore for any fixed e returned by
O, the vector v − t = (Y −C)e/q is distributed as

1
q

(
(W −C)e +

∑
i∈[m]

ei ·DqL(B),s,ci−wi

)
.

Because s ≥ ηε(qL(B)), the summation is distributed essentially as a Gaussian centered at 0 with parameter

‖e‖ · s
q
≤ β · ‖S‖

γ
≤ ‖S‖
g ·
√
n
,

which with overwhelming probability will have length at most ‖S‖/g, as desired. A more formal analysis
(also for arbitrary `p norms) can be done using the results of [Pei07] on the sums of discrete Gaussians over
lattices.

By standard repetition techniques, the reduction can be made correct with overwhelming probability. This
completes the proof of Theorem 9.2.
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rational coefficients. Mathematische Annalen, 261(4):515–534, December 1982.

[LLM06] Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On bounded distance decoding for
general lattices. In APPROX-RANDOM, pages 450–461, 2006.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision
resistant. In ICALP (2), pages 144–155, 2006. Full version in ECCC Report TR05-142.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based digital
signatures. In TCC, pages 37–54, 2008.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a cryptographic
perspective, volume 671 of The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston, Massachusetts, 2002.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and applications to
Ajtai’s connection factor. SIAM J. Comput., 34(1):118–169, 2004.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way
functions. Computational Complexity, 16(4):365–411, December 2007. Preliminary version in
FOCS 2002.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.

[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient
provers: Lattice problems and more. In CRYPTO, pages 282–298, 2003.

[NR06] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. In EUROCRYPT, pages 271–288, 2006.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology, 2008. To appear.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applica-
tions. In STOC, pages 33–43, 1989.

[Pei07] Chris Peikert. Limits on the hardness of lattice problems in `p norms. In IEEE Conference on
Computational Complexity, pages 333–346, 2007. Full version in ECCC Report TR06-148.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions
on cyclic lattices. In TCC, pages 145–166, 2006. Full version in ECCC Report TR05-158.

[PR07] Chris Peikert and Alon Rosen. Lattices that admit logarithmic worst-case to average-case
connection factors. In STOC, pages 478–487, 2007. Full version in ECCC Report TR06-147.

40



[PVW07] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. Cryptology ePrint Archive, Report 2007/348, 2007. Available at
http://eprint.iacr.org/2007/348.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC,
2008.

[Reg04a] Oded Regev. Lecture notes on lattices in computer science, 2004. Available at http://www.
cs.tau.ac.il/˜odedr/teaching/lattices_fall_2004/index.html, last
accessed 28 Feb 2008.

[Reg04b] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942, 2004.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84–93, 2005.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC,
pages 387–394, 1990.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor.
Comput. Sci., 53:201–224, 1987.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53,
1984.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
pages 114–127, 2005.

41

http://eprint.iacr.org/2007/348
http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/index.html
http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/index.html

	Introduction
	Overview of Results and Techniques
	Gaussian Sampling Algorithm
	Cryptographic Constructions

	Related Work
	Open Problems
	Organization and Reader's Guide

	Preliminaries
	Notation
	Cryptographic Notions
	Lattices
	Gaussians on Lattices
	Learning with Errors

	New Smoothing Parameter Bound
	Sampling from Discrete Gaussians
	Sampling Integers
	Sampling from Arbitrary Lattices

	Trapdoors for Hard Lattices
	Hard Random Lattices
	Hard Average-Case Problems
	Preimage Sampleable Functions
	Definitions
	Constructions


	Signature Schemes
	Full-Domain Hash Scheme
	Probabilistic FDH

	Identity-Based Encryption
	Dual Cryptosystem
	IBE System

	Trapdoors for Learning with Errors
	Variant Cryptosystem
	Identifying Messy Keys Efficiently
	Extracting Secret Keys

	Hardness of SIS and ISIS
	Acknowledgments

