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Abstract. Ring signatures and group signatures are prominent cryptographic primitives offering a combination
of privacy and authentication. They enable individual users to anonymously sign messages on behalf of a
group of users. In ring signatures, the group, i.e. the ring, is chosen in an ad hoc manner by the signer. In
group signatures, group membership is controlled by a group manager. Group signatures additionally enforce
accountability by providing the group manager with a secret tracing key that can be used to identify the otherwise
anonymous signer when needed. Accountable ring signatures, introduced by Xu and Yung (CARDIS 2004),
bridge the gap between the two notions. They provide maximal flexibility in choosing the ring, and at the same
time maintain accountability by supporting a designated opener that can identify signers when needed.
We revisit accountable ring signatures and offer a formal security model for the primitive. Our model offers
strong security definitions incorporating protection against maliciously chosen keys and at the same time
flexibility both in the choice of the ring and the opener. We give a generic construction using standard tools.
We give a highly efficient instantiation of our generic construction in the random oracle model by meticulously
combining Camenisch’s group signature scheme (CRYPTO 1997) with a generalization of the one-out-of-many
proofs of knowledge by Groth and Kohlweiss (EUROCRYPT 2015). Our instantiation yields signatures of
logarithmic size (in the size of the ring) while relying solely on the well-studied decisional Diffie-Hellman
assumption. In the process, we offer a number of optimizations for the recent Groth and Kohlweiss one-out-of-
many proofs, which may be useful for other applications.
Accountable ring signatures imply traditional ring and group signatures. We therefore also obtain highly efficient
instantiations of those primitives with signatures shorter than all existing ring signatures as well as existing
group signatures relying on standard assumptions.

Keywords: Accountable ring signatures, group signatures, one-out-of-many zero-knowledge proofs.

1 Introduction

Significant effort has been devoted to the study of signature schemes with privacy properties that allow
a signer to remain anonymous within a set of users. Two prominent examples of anonymous signature
schemes are ring signatures [RST01] and group signatures [CvH91]. Ring signatures allow a signer to
choose any ad hoc set of users, i.e. a ring, and sign anonymously on behalf the ring. Group signatures
also allow a signer to sign anonymously on behalf of a group of users but here group membership is
controlled by a designated group manager. The advantage of group signatures is accountability; in case of
abuse, the group manager can revoke anonymity and identify the signer.

Accountable ring signatures [XY04] bridge the gap between ring signatures and group signatures.
They offer the flexibility of freely choosing the ring of users when creating a signature and at the same
time enforce accountability by including an opener who can open a signature and reveal who signed it.
The combination of flexibility and accountability allows applications where ring signatures or group
signatures are less suitable. Consider, for instance, an online forum that wants to offer anonymity to users
but also wants to be able to trace people who violate the code of conduct. A forum can achieve this by
allowing user posts with accountable ring signatures where the owner is the specified opener. This system
is decentralized and flexible since different fora can have their own opener keys and users do not have to
register with each individual forum they post to. Another potential application is an auction system where
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bids are public but unsuccessful bidders want anonymity. Bidders sign bids with the seller as opener and
at the end of the auctions the seller can disclose the winner in a verifiable way.
OUR CONTRIBUTION. We introduce a new security model for accountable ring signatures. The signer
specifies, in addition to a set of users that could have produced the signature, the public key of an opening
entity, which will be able to remove anonymity. This opening mechanism offers protection against
misbehaving signers while at the same time not relying on a single, centralized group manager. Our
security definitions are stringent and when possible incorporate protection against maliciously chosen
keys.

We provide a generic construction of accountable ring signatures from standard cryptographic tools.
We also give a concrete instantiation, combining ideas from Camenisch’s group signature [Cam97] with a
generalization of the one-out-of-many proof of knowledge of Groth and Kohlweiss [GK15]. The most
efficient ring and group signatures [ACJT00, CL02, CKS09, BBS04, DKNS04, CG05, Ngu05, GK15] in
the literature are in the random oracle model [FS87] and so is ours. However, the only other assumption
we make is the hardness of the well-established decisional Diffie-Hellman problem.1

From a technical viewpoint, we offer two optimisations of Groth-Kohlweiss one-out-of-many proofs.
One perspective on their proof system is that they form a binary tree and prove that one of the leaves is
selected. We generalise their approach to n-ary trees, allowing us to fine-tune the parameters for better
performance. For N = nm, our optimisations reduce the number of group elements in the 1-out-of-N
proof from 4m to 2m with little impact on the number of field elements or computational cost. Also,
while their proofs can be used for ElGamal encryption, which is what we need for our scheme, this
imposes an overhead in all parts of their protocol. We deploy more efficient Pedersen commitments in
some parts of the proof, thus limiting the overhead of ElGamal.

The end result is an accountable ring signature scheme with efficient computation and very small
signatures. Namely, for a ring with N = poly(λ) users, we obtain signatures of size approximately
5
2λ log2N bits, which is smaller than all existing group and ring signatures based on standard assumptions.
RELATED WORK. Accountable ring signatures were informally defined by Xu and Yung [XY04]. Their
security model mitigates the trust on the opener by using several openers and a threshold decryption
mechanism, whereas we reduce the trust in the opener by allowing users to choose arbitrary openers
(and leaving it to the verifier to decide whether they trust the opener). It would be easy to generalize our
definitions to accommodate threshold decryption as well. Xu and Yung rely on the tamper-resistance of
smart cards to ensure that the signatures contain some footprint of the signer. In our model, we require the
signer to provide a proof that his signature is well-formed. Finally, Xu and Yung require the existence of
trapdoor permutations whereas we rely on the hardness of the Decision Diffie-Hellman (DDH) problem.

Our security model for accountable ring signatures is also very similar to the identity escrow extension
by Dodis et al. [DKNS04], except that we allow for an arbitrary choice of opener and we require openers to
prove correctness of their decisions. The construction in [DKNS04] relies on the strong RSA assumption
whereas we rely on, in our opinion, the more established DDH assumption.

Traceable ring signatures [FS08] and linkable ring signatures [LWW04] also offer some restricted
form of accountability. In traceable ring signatures, any couple of signatures produced by the same user
will reveal her identity. In linkable group signatures, it is possible to efficiently decide whether two
signatures were produced by the same user but without revealing his identity. Unique ring signatures
[FZ13] encompass both traceable and linkable ring signatures.

Formal security models for group signatures were introduced by Bellare et al. [BMW03] in the static
case and by Kiayias and Yung [KY05] and Bellare et al. [BSZ05] in the partially dynamic case where
users can join the group at any time. A formal security model for ring signatures was provided by Bender
et al. [BKM09].

1 An important advantage of working over a discrete logarithm group is that so do many standard signature schemes, e.g., DSS.
We therefore already have many users with suitable public verification keys in a standard cyclic group, e.g., NIST’s 256-bit
elliptic curve group P-256.
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The first practical and provably secure group signature was due to Ateniese et al. [ACJT00]. Their
scheme was later improved by Camenisch and Lysyanskaya to allow efficient revocation of group member
using dynamic accumulators [CL02]. Both schemes yield signatures of constant size and are based on the
DDH and the strong RSA assumptions, in the random oracle model. Boneh et al. [BBS04] also constructed
constant size group signatures under the strong Diffie-Hellman and the Decision Linear assumption in
pairing groups. Other pairing-based schemes include [ACHdM05, NSN04, CG05, BW07, Gro07, CKS09,
LPY12]. Recently, Langlois et al. [LLNW14] gave an efficient lattice-based group signature scheme
supporting revocation, based on the hardness of approximating the shortest independent vectors problem
in lattice of dimension n within a factor Õ(n1.5). Our scheme achieves roughly the same signature sizes
as theirs under an arguably more standard and better understood assumption.

Constant-size ring signatures can also be based on the strong RSA assumption [DKNS04] and on
pairing assumptions [Ngu05]. Very recently, Groth and Kohlweiss provided a ring signature scheme based
on the discrete logarithm assumption in the random oracle model, which is asymptotically more efficient
than previous ones. Our accountable ring signature scheme extends Groth and Kohlweiss’ scheme to
enforce accountability and due to our optimisations, we get a performance improvement as well.

2 Defining Accountable Ring Signatures

We write y = A(x; r) when the algorithm A on input x and randomness r outputs y. We write y ← A(x)
for the process of setting y = A(x; r) where r is sampled at random. We also write y ← S for sampling
y uniformly at random from a set S. Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) if
|f(λ)− g(λ)| = λ−ω(1). We say f is negligible if f(λ) ≈ 0 and that f is overwhelming if f(λ) ≈ 1. By
PPT we mean running in probabilistic polynomial time in the relevant security parameter λ.

An accountable ring signature scheme over a PPT setup Setup is a tuple of polynomial-time algo-
rithms (OKGen,UKGen, Sign,Vfy,Open, Judge).

Setup(1λ): Given the security parameter, produces public parameters pp used (sometimes implicitly)
by the rest of the scheme. The public parameters define key spaces PK,DK,VK,SK with efficient
algorithms for sampling and deciding membership.

OKGen(pp): Given the public parameters pp, produces a public key pk ∈ PK and secret key dk ∈ DK
for an opener. Without loss of generality, we assume dk defines pk deterministically and write
pk = OKGen(pp, dk) when computing pk from dk.

UKGen(pp): Given the public parameters pp, produces a verification key vk ∈ VK and a secret
signing key sk ∈ SK for a user. We can assume sk deterministically determines vk and write
vk = UKGen(pp, sk) when computing vk from sk.

Sign(pk,m,R, sk): Given an opener’s public key, a message, a ring (i.e. a set of verification keys) and a
secret key, produces a ring signature σ. The algorithm returns the error symbol ⊥ if the inputs are
malformed, i.e., if pk /∈ PK, R 6⊂ VK, sk /∈ SK or vk = UKGen(pp, sk) /∈ R.

Vfy(pk,m,R, σ): Given an opener’s public key, a message, a ring and a signature, returns 1 if accepting
the signature and 0 otherwise. We assume the algorithm always returns 0 if the inputs are malformed,
i.e., if pk /∈ PK or R 6⊂ VK.

Open(m,R, σ, dk): Given a message, a ring, a ring signature and an opener’s secret key, returns a
verification key vk and a proof ψ that the owner of vk produced the signature. If any of the inputs
are invalid, i.e., dk /∈ DK or σ is not a valid signature using pk = OKGen(pp, dk), the algorithm
returns ⊥.

Judge(pk,m,R, σ, vk, ψ): Given an opener’s public key, a message, a ring, a signature, a verification
key and a proof, returns 1 if accepting the proof and 0 otherwise. We assume the algorithm returns 0
if σ is invalid or vk /∈ R.

An accountable ring signature scheme should be correct, fully unforgeable, anonymous and traceable
as defined below.
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Definition 1 (Perfect correctness). An accountable ring signature scheme is perfectly correct if for any
PPT adversary A

Pr

 pp← Setup(1λ); (vk, sk)← UKGen(pp);
(pk,m,R)← A(pp, sk);σ ← Sign(pk,m,R, sk) :

If pk ∈ PK, R ⊂ VK, vk ∈ R then Vfy(pk,m,R, σ) = 1

 = 1.

We remark that correctness of the opening algorithm (w.r.t. an honestly generated opener key) is implied
by the other requirements.

Full unforgeability ensures that an adversary, who may control the opener, can neither falsely accuse
an honest user of producing a ring signature nor forge ring signatures on behalf of an honest ring.
The former should hold even when all other users in the ring are corrupt. This requirement combines
the non-frameability of group signatures [BSZ05] and the unforgeability of ring signatures [BKM09]
requirements.

Definition 2 (Full Unforgeability). An accountable ring signature scheme is fully unforgeable if for any
PPT adversary A

Pr



pp← Setup(1λ); (pk, vk,m,R, σ, ψ)← AUKGen,Sign,Reveal(pp) :(
vk ∈ QUKGen \QReveal ∧ (pk, vk,m,R, σ) /∈ QSign

∧ Judge(pk,m,R, σ, vk, ψ) = 1
)

∨
(
R ⊂ QUKGen \QReveal ∧ (pk, ·,m,R, σ) /∈ QSign

∧ Vfy(pk,m,R, σ) = 1
)


≈ 0.

– UKGen runs (vk, sk)← UKGen(pp) and returns vk. QUKGen is the set of verification keys vk that
have been generated by this oracle.

– Sign is an oracle that on query (pk, vk,m,R) returns σ ← Sign(pk,m,R, sk) if vk ∈ R∩QUKGen.
QSign contains the queries and responses (pk, vk,m,R, σ).

– Reveal is an oracle that when queried on vk ∈ QUKGen returns the corresponding signing key sk.
QReveal is the list of verification keys vk for which the corresponding signing key has been revealed.

Anonymity ensures that a signature does not reveal the identity of the ring member who produced it
without the opener explicitly wanting to open the particular signature. We allow the adversary to choose
the secret signing keys of the users which implies anonymity against full key exposure attacks [BKM09]
where the users’ secret signing keys have been revealed. Our definition also captures unlinkability as
used in [XY04]: if an adversary can link signatures by the same signer, it can break anonymity.

Definition 3 (Anonymity). An accountable ring signature scheme is anonymous if for any PPT adver-
sary A

Pr
[
pp← Setup(1λ); b← {0, 1}; (pk, dk)← OKGen(pp) :

AChalb,Open(pp, pk) = b

]
≈ 1

2
.

– Chalb is an oracle that the adversary can only call once. On query (m,R, sk0, sk1) it runs σ0 ←
Sign(pk,m,R, sk0); σ1 ← Sign(pk,m,R, sk1). If σ0 6= ⊥ and σ1 6= ⊥ it returns σb, otherwise it
returns ⊥.

– Open is an oracle that on a query (m,R, σ) returns Open(m,R, σ, dk). If σ was obtained by calling
Chalb on (m,R), the oracle returns ⊥.

Traceability ensures that the specified opener can always identify the ring member who produced a
signature and that she is able to produce a valid proof for her decision.
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Definition 4 (Traceability). An accountable ring signature scheme is traceable if for any PPT adversary
A

Pr

 pp← Setup(1λ); (dk,m,R, σ)← A(pp);
pk ← OKGen(pp, dk); (vk, ψ)← Open(m,R, σ, dk) :
Vfy(pk,m,R, σ) = 1 ∧ Judge(pk,m,R, σ, vk, ψ) = 0

 ≈ 0.

Tracing soundness ensures that a signature cannot trace to two different users; only one person can be
identified as the signer even when all users as well as the opener are fully corrupt. Similarly to the setting
of group signatures [SSE+12], this requirement is vital for some applications, e.g., where users might be
rewarded for signatures they produced, or to avoid shifting blame when signatures are used as evidence
of abuse.

Definition 5 (Tracing Soundness). An accountable ring signature scheme satisfies tracing soundness if
for any PPT adversary A

Pr
[
pp← Setup(1λ); (m,σ,R, pk, vk1, vk2, ψ1, ψ2)← A(pp) :
∀i ∈ {1, 2}, Judge(pk,m,R, σ, vki, ψi) = 1 ∧ vk1 6= vk2

]
≈ 0.

2.1 Ring and Group Signatures from Accountable Ring Signatures

We will now relate accountable ring signatures to ring signatures and group signatures by showing that
the latter are implied by accountable ring signatures.

RING SIGNATURES. Traditional ring signatures [RST01] do not have an opener and their security
requires anonymity of the signer and unforgeability [RST01, BKM09]. By simply regarding the opener’s
public key as part of the signature and ignoring the opening and judge algorithms, we obtain a traditional
ring signature scheme from an accountable ring signature. Correctness and anonymity follow from those
of the accountable ring signature, whereas unforgeability is implied by full unforgeability and traceability.

GROUP SIGNATURES. Bellare et al. [BMW03] defined group signatures for static groups, where the
population of the group is fixed once and for all at the setup time, and where the group manager
additionally acts as the designated opener. Besides, correctness, their model requires full anonymity
and full traceability. The latter requires that an adversary in possession of the group master secret key
who can corrupt members of the group, cannot produce a new signature that does not trace to a user
in set of corrupt users. An accountable ring signature satisfying our security definitions gives rise to
a group signature scheme as follows: We fix the group manager as the designated opener and set the
corresponding decryption key as the group master secret key gmsk used as the tracing key. In the setup,
the group members generate their personal key pairs and we publish the ring containing the public keys
of the members as part of the group signature public key. Group signatures are then just accountable ring
signatures w.r.t. this ring. Full anonymity follows from the anonymity of the accountable ring signature
scheme, whereas full traceability follows from full unforgeability and traceability.

The group public key in our scheme is quite large since it grows linearly in the number of members.
However, this is a cost that can be amortized over many signatures. An advantage of the group signature
scheme on the other hand is that it can easily be made dynamic. The group manager can enrol or remove
users by adding or deleting their verification keys from the group public key [DKNS04]. In the dynamic
group signature scheme, the group public key is changing and group signatures must be verified against
the group as it was at the time of signing, but for scenarios where the group is not changing too often or
where great flexibility is desired this is a price worth paying.

3 Preliminaries

We define here the tools and assumptions we use.

5



3.1 Cyclic Groups and Assumptions

A group generator G is a PPT algorithm that on input 1λ (for a security paremeter λ) returns a description
gk = (G, q, g) of a group G of prime order q and a generator g. We assume the group has associated
polynomial time algorithms for computing group operations and deciding membership.

The Discrete Logarithm (DL) assumption holds relative to G if for all PPT adversaries A

Pr
[
gk = (G, q, g)← G(1λ);x← Zq;h := gx : A(gk, h) = x

]
≈ 0.

The Decisional Diffie-Hellman (DDH) assumption holds relative to G if for all PPT adversaries A

Pr
[

gk = (G, q, g)← G(1λ);x, y, z ← Zq; b← {0, 1};
h := gx;u := gy; v := g(1−b)xy+bz : A(gk, h, u, v) = b

]
≈ 1

2
.

The DDH assumption relative to G implies the DL assumption relative to G. The DDH assumption is
believed to hold when G is an appropriately chosen subgroup of elliptic curve groups or multiplicative
groups of large characteristic finite fields.

3.2 One-way Function

A function f : X → Y (over setup gk, which defines the function f , the domain X and range Y ) is
one-way if f is polynomial-time computable and is hard to invert, i.e. for all PPT adversaries A

Pr
[
gk ← G(1λ);x← X; y := f(x) : A(gk, y) = x

]
≈ 0.

We will instantiate f via group exponentiation, i.e. x 7→ gx with domain Zq and range G. The
one-wayness of f is then implied by the DL assumption.

3.3 Non-Interactive Zero-Knowledge (NIZK) Proofs

A NIZK proof system (over a setup gk) for an NP-relation R defining the language LR := {s | ∃w :
(s, w) ∈ R}, where s is a statement and w is a witness, is a tuple of polynomial-time algorithms
(CRSGen,Prove,PVfy) which are defined as follows:

CRSGen(gk) on input the setup gk, outputs a common reference string crs.
Prove(crs, s, w) on input the reference string crs, a statement s and a witness w, outputs a proof π that

(s, w) ∈ R.
PVfy(crs, s, π) on input the reference string crs, a statement s and a proof π, verifies that π is a valid

proof for s ∈ LR outputting a bit accordingly.

Perfect completeness of the proof system requires that for any crs generated by CRSGen and any
pair (s, w) ∈ R we have Pr[PVfy(crs, s,Prove(crs, s, w))] = 1. Additionally, we require soundness
and zero-knowledge, which are as follows:

– Soundness: For all PPT adversaries A, we have

Pr
[
gk ← G(1λ); crs← CRSGen(gk); (s, π)← A(gk, crs) :

PVfy(crs, s, π) = 1 ∧ s /∈ LR

]
≈ 0.
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– Zero-Knowledge: There exist PPT algorithms (SimCRSGen, SimProve), where SimCRSGen(gk)
outputs a simulated reference string crs and possibly a simulation trapdoor τ , and SimProve(crs, s, τ)
produces a simulated proof (without knowing a witness). We require that

Pr
[
gk ← G(1λ); crs← CRSGen(gk) : AProve(gk, crs) = 1

]
≈Pr

[
gk ← G(1λ); (crs, τ)← SimCRSGen(gk) : ASim(gk, crs) = 1

]
,

where on query (s, w) ∈ R, Sim returns π ← SimProve(crs, s, τ).

Sigma-protocols. We will in our instantiation use NIZK proofs in the random oracle model obtained by
applying the Fiat-Shamir transformation [FS87] to interactive Σ-protocols, which are 3-move protocols
that allow a prover to convince a verifier that a certain statement is true.

A Σ-protocol for a relationR w.r.t. a setup gk is a tuple (Gcrs,P,V) which are defined as follows:

Gcrs(gk) on input the setup gk, outputs a common reference string crs.
P(crs, s, w) on input the reference string crs, a statement s and a witness w, generates an initial

message a.
P(x) on input a random challenge x, computes a response z.
V(crs, s, a, x, z) on input the reference string crs, a statement s, an initial message a, a random challenge

x, and a response z, verifies the proof and outputs either 1 for acceptance or 0 for rejection.

Besides completeness, we require Σ-protocols to have Special Honest Verifier Zero-Knowledge
(SHVZK) and n-Special Soundness [GK15]:

– SHVZK: Given any statement s ∈ LR and any verifier challenge x, it is possible to simulate a
transcript of the protocol.

– n-Special Soundness: For any statement s, from n accepting transcripts {(a, xi, zi)}ni=1 for s ∈ LR
where the challenges xi are distinct, we can extract w s.t. (s, w) ∈ R.

3.4 Signature of Knowledge

A Signature of Knowledge (SoK) for an NP-relationR w.r.t. a setup gk is a tuple (SoKSetup,SoKSign,
SoKVerify) which are defined as follows:

SoKSetup(gk) on input the setup gk, outputs public parameters pp.
SoKSign(pp, s, w,m) on input the public parameters pp, a statement s, a witness w, and a message m,

outputs a signature σSoK on m if (s, w) ∈ R.
SoKVerify(pp, s,m, σSoK) on input the public parameters pp, a statement s, a message m, and a

signature σSoK, outputs 1 if σSoK is a valid signature on m or 0 otherwise.

The (game-based) security definition for signatures of knowledge (SimExt) [CL06], besides correctness,
requires Simulatability and Extractability. We consider a stronger generalisation of the latter called
f -extractability [BCKL08]:

– Simulatability: There are PPT algorithms (SoKSimSetup,SoKSimSign), where SoKSimSetup(gk)
outputs public parameters pp and some trapdoor τ , whereas SoKSimSign(pp, τ, s,m) outputs a
signature σSoK, such that

Pr
[
gk ← G(1λ); (pp, τ)← SoKSimSetup(gk) : ASoKSim(gk, pp) = 1

]
≈Pr

[
gk ← G(1λ); pp← SoKSetup(gk) : ASoKSign(gk, pp) = 1

]
,

for all PPT adversaries A, where SoKSim(s, w,m) returns SoKSimSign(pp, τ, s,m) if (s, w) ∈ R
and ⊥ otherwise.
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– f -Extractability: For all PPT adversaries A, there exists a polynomial time algorithm SoKExtract
such that:

Pr


gk ← G(1λ); (pp, τ)← SoKSimSetup(gk);
(s,m, σSoK)← ASoKSim(gk, pp);
y ← SoKExtract(pp, τ, s,m, σSoK) :

(s,m, σSoK) ∈ QSoKSim ∨ SoKVerify(pp, s,m, σSoK) = 0
∨
(
∃w s.t. (s, w) ∈ R ∧ y = f(w)

)

 ≈ 1·

In the above, QSoKSim is a list of queries to the SoKSimSign oracle. Note that our extractability
definition is stronger than that of [CL06], as we allow the adversary to ask for signatures w.r.t.
statements for which it does know the witness. In the definition, if f is the identity function, we get
the standard notion of extractability.

Signatures of knowledge in the random oracle model can be efficiently realized by applying the Fiat-
Shamir transformation to Σ-protocols. Applying the transformation to Σ-protocols having quasi-unique
responses (i.e. given an accepting transcript, it is infeasible to find a different accepting response w.r.t.
the same initial message and challenge) provides weak simulation-extractability [FKMV12], where the
extractor needs to rewind the prover. To get straightline f -extractability, i.e. without rewinding [Fis05],
we additionally encrypt a function f of the witness with a public key in the reference string and prove
that the encrypted value is consistent with the witness. This way we get both full weak extractability and
straightline f -extractability simultaneously.

3.5 Commitment Scheme

A non-interactive commitment scheme (over a setup gk) consists of two polynomial-time algorithms
(CGen,Comck), where CGen(gk) outputs a commitment key ck, and Comck is a randomized algorithm
that on input a message m and a randomness r outputs a commitment c. To open a commitment, one
revealsm and r allowing anyone to verify that c is indeed a commitment tom. We require that the scheme
is hiding and binding. Hiding requires that for all PPT stateful adversaries A

Pr
[
gk ← G(1λ); ck ← CGen(gk); (m0,m1)← A(gk, ck);
b← {0, 1}; c← Comck(mb) : A(c) = b

]
≈ 1

2
.

Binding requires that for all polynomial-time stateful adversaries A

Pr
[
gk ← G(1λ); ck ← CGen(gk); (m0, r0,m1, r1)← A(gk, ck) :

m0 6= m1 ∧ Comck(m0, r0) = Comck(m1, r1)

]
≈ 0.

Pedersen commitments [Ped91] are of the form c = grhm where r ← Z∗q , h← G and m ∈ Zq. They are
perfectly hiding and computationally binding assuming the DL assumption holds.

CGen(gk)
h1, . . . , hn ← G.
Return ck := (h1, . . . , hn).

Comck(m1, . . . ,mn)
If (m1, . . . ,mn) /∈ Znq return ⊥.
r ← Zq; Return c := gr

∏n
i=1 h

mi
i .

Fig. 1. Pedersen commitment to multiple elements.

We exploit the fact that the Pedersen commitment scheme is homomorphic, i.e., for all correctly
generated gk, ck and all m,m′, r, r′ ∈ Zq

Comck(m; r) · Comck(m′; r′) = Comck(m+m′; r + r′).

We will use a variant of the Pedersen commitment scheme to commit to multiple messages at once as
shown in Fig. 1.
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3.6 IND-CPA Public-Key Encryption

A public-key encryption (PKE) scheme (over setup gk) consists of three algorithms (PKEGen,Enc,Dec),
which are defined as follows:

PKEGen(gk) is a probabilistic algorithm that on input the setup gk, generates a public key and decryp-
tion key pair (pk, dk). Without loss of generality, we assume pk can be efficiently computed given
dk and write pk = PKEGen(gk, dk) for this computation which returns ⊥ if dk is not valid.

Enc(pk,m) is a probabilistic algorithm that on input the public key pk and a message m, returns a
ciphertext c if all its inputs are valid and ⊥ otherwise.

Dec(dk, c) is a deterministic algorithm that on input the decryption key dk and a ciphertext c, returns
either the message m or the failure symbol ⊥.

We assume that gk, which is an implicit input to Enc and Dec, defines the public key, decryption key,
message, randomness and ciphertext spaces PK, DK, M, Rnd and C.

Correctness of PKE requires that for all m ∈ M, all gk ← G(1λ) and all (pk, dk)← PKEGen(gk),
it holds that m = Dec(dk,Enc(pk,m)). We also require that the scheme is indistinguishable under
chosen plaintext attacks (IND-CPA), i.e., for all PPT stateful adversaries A

Pr
[
gk ← G(1λ); (pk, dk)← PKEGen(gk)
(m0,m1)← A(gk, pk); b← {0, 1}; c← Enc(pk,mb)

: A(c) = b

]
≈ 1

2
,

where we require A outputs m0,m1 ∈ M.
We will in our instantiation use ElGamal encryption described in Fig. 2, which is IND-CPA secure

if the DDH assumption holds relative to G where gk = (G, q, g)← G(1λ). We also note that ElGamal
ciphertexts are homomorphic, similarly to Pedersen commitments. We have PK := G∗, DK := Z∗q ,
M := G, Rnd := Zq, and C := G2.

PKEGen(gk)
dk ← Z∗q ; pk := gdk.

Return (pk, dk).

Enc(pk,m)
If pk /∈ G∗ or m /∈ G return ⊥.
r ← Zq; Return c := (pkr, grm).

Dec(dk, c = (u, v))
If dk /∈ Z∗q or c /∈ G2 return ⊥.
Return m := vu−

1
dk .

Fig. 2. ElGamal encryption.

4 Constructing Accountable Ring Signatures

Our generic construction (shown in Fig. 3) uses a one-way function f , an IND-CPA public-key encryption
scheme, a signature of knowledge, and a zero-knowledge proof of membership, all of which share the
same setup gk. The setup gk defines domain SK and range VK for f , and key, message, randomness and
ciphertext spaces PK,DK,M,Rnd,C for the encryption scheme. The range of f and the message space
of the encryption scheme need to be compatible such that VK ⊆ M.

The idea is that an opener will have a key pair for the encryption scheme and the user will have
a secret key sk and corresponding verification key vk = f(sk). To sign a message m w.r.t. a ring R,
the signer first encrypts her verification key under the opener’s public key and provides a signature of
knowledge on m proving the ciphertext encrypts a verification key in the ring and that she knows the
secret key associated with the encrypted verification key. To open a signature, the opener decrypts the
ciphertext to obtain the user’s verification key and provides an NIZK proof of correct decryption.

The relations Rsig and Ropen associated with the signature of knowledge and the NIZK system,
respectively, are as follows:
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Setup(1λ)
gk ← G(1λ); crs← CRSGen(gk)
ppSoK ← SoKSetup(gk)
Return pp := (gk, ppSoK, crs)

OKGen(pp)
(pk, dk)← PKEGen(gk)
Return (pk, dk)

Open(m,R, σ, dk)
pk ← OKGen(pp; dk)
If Vfy(pk,m,R, σ) = 0 return ⊥
Parse σ as (c, σSoK)
vk := Dec(dk, c)
ψ ← Prove(crs, (pk, c, vk), dk)
Return (vk, ψ)

UKGen(pp)
sk ← SK; vk := f(sk); Return (vk, sk)

Sign(pk,m,R, sk)
vk ← f(sk); r ← Rnd; c← Enc(pk, vk; r)
σSoK ← SoKSign(ppSoK, (pk,R, c), (sk, r),m)
Return σ := (c, σSoK)

Vfy(pk,m,R, σ)
Parse σ as (c, σSoK)
Return SoKVerify(ppSoK, (pk,R, c),m, σSoK)

Judge(pk,m,R, σ, vk, ψ)
If Vfy(pk,m,R, σ) = 0 return 0
Parse σ as (c, σSoK)
Return PVfy(crs, (pk, c, vk), ψ)

Fig. 3. A generic construction for Accountable Ring Signatures.

Rsig :=
{ (

(pk,R, c), (sk, r)
)

:
R ⊂ VK ∧ vk := f(sk) ∈ R ∧ c = Enc(pk, vk; r)

}
·

Ropen :=
{ (

(pk, c, vk), dk
)

:
pk = PKEGen(gk; dk) ∈ PK ∧ vk = Dec(dk, c) ∧ vk ∈ VK

}
·

We prove the following theorem in Appendix A.

Theorem 1. The accountable ring signature construction in Fig. 3 is perfectly correct, anonymous,
fully unforgeable, traceable, and satisfies tracing soundness if the building blocks satisfy the security
definitions in Sec. 3.

Since all the building blocks can be constructed from (doubly enhanced) trapdoor permutations, we get
as a corollary that trapdoor permutations imply the existence of accountable ring signatures.

5 Efficient Instantiation

We give here an efficient instantiation of the generic construction from Fig. 3. The instantiation is secure
in the random oracle model under the well-established DDH assumption. As specified in Sec. 3, we
instantiate f with group exponentiation and the IND-CPA encryption scheme with ElGamal. We will get
the Signature of Knowledge and NIZK proof for the relationsRsig andRopen by applying the Fiat-Shamir
transform to suitable Σ-protocols for these relations. Thanks to the straightline f -Extractability of our
instantiation of the signature of knowledge, we can answer the adversary’s Open queries in the anonymity
game by extracting vk = f(sk) from σSoK without rewinding.

5.1 Details of theΣ-protocols

We give here the details of the different Σ-protocols used in the instantiation.
For all Σ-protocols, the setup includes the group description gk and the common reference string

crs := (ck, ek), where ck ← CGen(gk), (ek, τ) ← PKEGen(gk) and ek = gτ for τ ← Z∗q , for the
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Pedersen commitment scheme and the ElGamal encryption scheme, respectively. The proofs of the
lemmata can be found in Appendix B.
Committed bits. We first give a Σ-protocol for a commitment B having an opening consisting of
sequences of bits, where in each sequence there is exactly one 1. More precisely, we give in Fig. 4 a
Σ-protocol (Gcrs,P1,V1) for the relation

R1 =
{

(B, (b0,0, . . . , bm−1,n−1, r)) :
(∀i, j : bj,i ∈ {0, 1}) ∧ (∀j :

∑n−1
i=0 bj,i = 1) ∧B = Comck(b0,0, . . . , bm−1,n−1; r)

}
The main idea is to prove that bj,i(1− bj,i) = 0 for all i, j, and also that

∑n
i=1 bj,i = 1.

P1(gk, crs,B, (b0,0, . . . , bm−1,n−1, r)) V1(gk, crs,B)
rA, rC , rD, aj,1, . . . , aj,n−1 ← Zq
∀j : aj,0 := −

∑n−1
i=1 aj,i A,C,D

A := Comck(a0,0, . . . , am−1,n−1; rA) -

C := Comck({aj,i(1− 2bj,i)}m−1,n−1
j,i=0 ; rC) Accept if and only if

D := Comck(−a2
0,0, . . . ,−a2

m−1,n−1; rD) x← {0, 1}λ A,B,C,D ∈ G
� f0,1, . . . , fm−1,n−1, zA, zC ∈ Zq

∀j, i : fj,i := bj,ix+ aj,i ∀j : fj,0 := x−
∑n−1

i=1 fj,i
zA := rx+ rA f0,1, f1,1, . . . , fm−1,n−1, zA, zC BxA = Comck(f0,0, . . . , fm−1,n−1; zA)
zC := rCx+ rD

- CxD = Comck({fj,i(x− fj,i)}m−1,n−1
j,i=0 ; zC)

Fig. 4. Σ-protocol for relation R1.

Lemma 1. The Σ-protocol in Fig. 4 is perfectly complete, perfect SHVZK, computational 3-special
sound and has quasi-unique responses.

List Containing Encryption of 1. We now describe a Σ-protocol that a list of N ElGamal ciphertexts
(c0, . . . , cN−1) includes an encryption of 1. More precisely, we give a Σ-protocol (Gcrs,P2,V2) (see
Fig. 5) for the relation:

R2 =
{

(({ci}N−1
i=0 ), (`, r)) : (∀i, ci ∈ G2) ∧ ` ∈ {0, . . . , N − 1} ∧ c` = Encek(1; r)

}
This generalizes easily to other homomorphic encryption and commitment schemes.

Since we can pad the list with copies of the last ciphertext (at little extra cost in the protocol), we
may assume N = nm. We will later discuss the efficiency implications of different choices of n. The
idea behind our Σ-protocol is to prove knowledge of an index ` for which the product

∏N−1
i=0 c

δ`,i

i is an
encryption of 1, where as usual δ`,i = 1 when i = ` and δ`,i = 0 otherwise. We have δ`,i =

∏m−1
j=0 δ`j ,ij ,

where ` =
∑m−1

j=0 `jn
j and i =

∑m−1
j=0 ijn

j are the n-ary representations of ` and i respectively.
The prover first commits tom sequences of n bits (δ`j ,0, . . . , δ`j ,n−1). It runs theΣ-protocol in Fig. 4

to prove that the commitment is well-formed. On receiving a challenge x, the prover discloses elements
fj,i = δ`j ,ix+ aj,i as in Fig. 4. Observe that for every i ∈ {0, . . . , N − 1}, the product

∏m−1
j=0 fj,ij is the

evaluation at x of the polynomial pi(x) =
∏m−1
j=0 (δ`j ,ix+ aj,i). For 0 ≤ i ≤ N − 1, we have:

pi(x) =
m−1∏
j=0

δ`j ,ijx+
m−1∑
k=0

pi,kx
k = δ`,ix

m +
m−1∑
k=0

pi,kx
k, (1)

for some coefficients pi,k depending on ` and aj,i. Note that pi,k can be computed by the prover
independently of x, and that p`(x) is the only degree m polynomial amongst p0(x), . . . , pN−1(x).
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From these coefficients and some random noise values ρk, the prover computes ciphertexts Gk :=∏N−1
i=0 c

pi,k

i · Encek(1; ρk) and includes them in the initial message. These ciphertexts are then used to
cancel out the low degree terms in (1). Namely, if c` is an encryption of 1, the following product is an
encryption of 1 for any x

N−1∏
i=0

c

Qm−1
j=0 fj,ij

i ·
m−1∏
k=0

G−x
k

k =

(
N−1∏
i=0

c
δ`,i

i

)xm

.

P2(gk, crs, (c0, . . . , cN−1), (`, r)) V2(gk, crs, (c0, . . . , cN−1))
rB, ρk ← Zq
B := Comck(δ`0,0 , . . . , δ`m−1,n−1 ; rB)
(A,C,D)← P1(gk, crs,B, ({δ`j ,i}

m−1,n−1
j,i=0 , rB))

For k = 0, . . . ,m− 1 A,B,C,D, {Gk}m−1
k=0 Accept if and only if

Gk =
∏N−1
i=0 c

pi,k

i · Encek(1; ρk)
- A,B,C,D,G0, . . . , Gm−1 ∈ G

using pi,k from (1) x← {0, 1}λ f0,1, . . . , fm−1,n−1, zA, zC , z ∈ Zq
� V1(gk, crs,B, x,A,B,C, {fj,i}m−1,n−1

j=0,i=1 , zA, zC) = 1
(f0,1, . . . , fm−1,n−1, zA, zC)← P1(x) f0,1, . . . , fm−1,n−1, zA, zC , z ∀j : fj,0 := x−

∑n−1
i=1 fj,i

z := rxm −
∑m−1

k=0 ρkx
k - ∏N−1

i=0 c

Qm
j=1 fj,ij

i ·
∏m−1
k=0 G

−xk

k = Encek(1; z)

Fig. 5. Σ-protocol for a list c0, . . . , cN−1 containing an encryption of 1

Lemma 2. Let m ≥ 2. The Σ-protocol in Fig. 5 is perfectly complete, SHVZK, (m+ 1)-special sound
and has quasi-unique responses.

Correct Signature. We give in Fig. 6 a Σ-protocol for the relation
Rsig =

{
((pk,m,R, c), (sk, r)) : sk ∈ Zq ∧ vk = gsk ∈ R ⊂ G∗ ∧ c = Encpk(vk; r)

}
Psig(gk, crs, (pk,m,R, c), (r, sk)) Vsig(gk, crs, (pk,m,R, c))
s, t, ra, rb ← Zq; d← Encek(gsk; t)
A← Encpk(gs; ra); B ← Encek(gs; rb) d,A,B, a2 Accept iff
c0 := d · Encek(vk−1

0 ; 0), . . . , cN−1 := d · Encek(vk−1
N−1; 0) - R ⊂ G; pk ∈ G∗; d,A,B ∈ G2

a2 ← P2(gk, crs, (c0, . . . , cN−1), (`, t)) x← {0, 1}λ zs, za, zb ∈ Zq
� cxA = Encpk(gzs ; za)

zs := sk · x+ s ; za := rx+ ra ; zb := tx+ rb za, zb, zs, z2 dxB = Encek(gzs ; zb)
z2 ← P2(x) - V2(gk, crs, (c0, . . . , cN−1), a2, x, z2) = 1

Fig. 6. Σ-protocol for Rsig.

Lemma 3. The Σ-protocol in Fig. 6 is perfectly complete, SHVZK, m+ 1-special sound and has quasi-
unique responses.

Lemma 4. Applying the Fiat-Shamir transformation to the protocol in Fig. 6 with SoKSetup as in
Sect. 5 produces a signature of knowledge in the random oracle model, that is extractable and straightline
f -extractable.

Proof. For simulatability, SoKSimSetup is identical to SoKSetup and SoKSimSign programs the
random oracle to simulate proofs. Simulatability then follows from SHVZK.
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For extractability we rely on rewinding, m+ 1 special soundness and quasi-unique responses, using
[FKMV12]. For straightline f -extractability, we use the trapdoor τ to decrypt d in the proof transcript
and obtain vk = f(sk). ut

Correct Opening. Writing out the details of ElGamal encryption we get

Ropen =
{

((pk, c, vk), dk) :
dk ∈ Zq ∧ pk = gdk 6= 1 ∧ c = (u, v) ∈ G2 ∧ vk ∈ G ∧ (v/vk)dk = u

}

Popen(gk, crs, (pk, u, v, vk), dk) Vopen(gk, crs, (pk, u, v, vk))
a← Zq A,B Accept if and only if
A := ga - pk, u, v, vk ∈ G
B := (v/vk)a x← Zq pk 6= 1

� pkxA = gz

z = dk · x+ a z uxB = (v/vk)z
-

Fig. 7. Σ-protocol for correct decryption.

Lemma 5. The Σ-protocol in Fig. 7 is perfectly complete, perfect SHVZK, perfect 2-special sound and
has unique responses. Also, applying the Fiat-Shamir transformation to it produces a NIZK proof.

5.2 Efficiency of our schemes

The efficiency of our schemes is determined by the signature of knowledge of Fig. 6. For a ring of
N = nm users, this requires the prover to send m+ 4 ElGamal ciphertexts, 4 Pedersen commitments
and m(n − 1) + 6 elements of Zq . A full accountable ring signature includes an additional ElGamal
encryption, i.e. 2m+ 12 group elements and m(n− 1) + 6 field elements in total.

A signature can be computed using mN + 3mn + 2m + 12 group exponentiations as follows.
Computing A, C and D in the bit proof requires 2mn + 3 exponentiations since exponentiation by
(1− 2bi,j) amounts to a multiplication. By construction of ci in Fig. 6, the first components of all ci are
identical in Fig. 5, so computing the first components of all Gk costs 2m exponentiations. The second
components of all Gk requires mN +m exponentiations. We also need 9 exponentiations to compute B
in Fig. 5, d, A and B in Fig. 6, and the ElGamal encryption of the public key.

Signatures can be verified using N +2mn+2m+15 group exponentiations as follows: N +2m+3
exponentiations for the last verification equation in Fig. 5, 2mn+ 4 for the equations in Fig. 4 and 8 for
the first two verification equations in Fig. 6.

Our schemes can be instantiated over any group G where the DDH problem is computationally hard.
Let us say the security parameter λ determines the bit size of the field elements as |q| ≈ λ bits and
let N = poly(λ). When group elements are much larger than field elements, say more than a factor
λ, it is convenient to choose a large n. For instance, setting n = λ + 1 (in which case m = O(1)) the
communication complexity amounts to a constant number of group elements and mλ+ 6 field elements.
When group and field elements are of roughly the same size, as can be the case for elliptic curve groups,
our signatures have total size m(n+ 1) + 18 elements. Setting n = 4 gives communication of roughly
5 log4N + 18 = 5

2 log2N + 18 elements.
In table 8, we compare our instantiation with prior work. Since our signatures require a logarithmic

number of group elements, they enjoy shorter sizes than all previous signatures based on RSA and/or
DDH assumptions, for sufficiently large security parameters. Indeed, a constant number of RSA ring
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elements typically requires O(λ3) bits whereas the elliptic curve instantiation of our protocol achieves
O(λ logN) bit size. As long as λ is large enough and N ≤ 2λ

2
, our signatures will be shorter. Our

signatures are also a factor 2.8 shorter than Groth and Kohlweiss ring signatures.

Scheme Signature Size Assumptions Type
[ACJT00] 3Z∗n + 4Z Strong RSA Group

[CL02] 6Z∗n + 8Z Strong RSA Group
[DKNS04] 12Z∗n + 12Z Strong RSA Ring/Group

[CG05] 4Z∗n + 4Z Strong RSA + DDH Group
[GK15] (4 log2N)G + (3 log2N + 1)Z∗q DDH Ring

Ours (log2N + 12)G + 1
2(3 log2N + 12)Z∗q DDH Ring/Group

Fig. 8. Efficiency comparison between our instantiation and most efficient group and ring signatures based on RSA and/or DDH
assumptions. Z∗n,Z,G,Z∗q represent the size of RSA ring elements, integers, group elements and field elements, respectively.
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A Proof of Theorem 1

Proof. Perfect correctness follows from that of the building blocks and is easy to verify. Anonymity, full
unforgeability, traceability and tracing soundness follow from Lemmata 6, 7, 8 and 9, respectively.

Lemma 6. The accountable ring signature scheme in Fig. 3 is anonymous.

Proof. We start by replacing the algorithm SoKSetup of the signature of knowledge with SoKSimSetup,
and when answering the challenge query, we use SoKSimSign instead of SoKSign. By the SimExt
security of the SoK, the adversary has a negligible probability in distinguishing between the two settings.
This ensures that the signature of knowledge σSoK reveals no information about the underlying witness.

Next, we replace the algorithm CRSGen of the NIZK system with SimCRSGen and when answering
opening queries, we use SimProve instead of Prove. By the zero-knowledge property of the NIZK system,
the adversary has a negligible probability in distinguishing between the two settings.

Now, we modify the Open oracle into Open′ such that instead of decrypting the ciphertext, we run
SoKExtract to extract the verification key vk from the signature of knowledge σSoK. By the SimExt
security of the signature of knowledge, with overwhelming probability in each query, we get the same vk
as the plaintext of c.

As we are no longer using the decryption algorithm, by the IND-CPA security of the encryption
scheme, the probability of A winning the anonymity game is close to 1

2 .

Lemma 7. The accountable ring signature scheme in Fig. 3 is fully unforgeable.

Proof. We start by running the Setup algorithm as normal with the exception that here we replace
SoKSetup with SoKSimSetup. We forward pp to the adversary. By the simulatability of the signature
of knowledge, the adversary has a negligible probability in distinguishing between the two settings. From
now on, we use SoKSimSign instead of SoKSign when answering Sign queries. The adversary can win
in two ways:

– Case I: The adversary forges a valid ring signature on a message m w.r.t. an honest ring R where
(pk, ·,m,R, σ) /∈ QSign. By the SimExt security of the signature of knowledge, we can extract
a valid witness for the statement (pk,R, c) ∈ LRsig from which we obtain (vk, sk) such that
vk := f(sk) ∈ R. We use this to break the one-wayness of the function f which contradicts the
security of the function f .
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– Case II: The adversary outputs a valid ring signature σ := (c, σSoK) on a message m w.r.t. a ring R
and a proof ψ that the honest user with key vk produced the signature while such user never did so.
We start by guessing the user the adversary is going to frame. We have a probability 1

η(λ) of guessing
correctly, where η(λ) is a polynomial representing an upper bound on the number of honest users
A uses in the game. By the soundness of the NIZK system, ψ is a proof for a valid statement
(pk, c, vk) ∈ LRopen . In the game, we abort if A asks for the secret key of the user we guessed. For
all other honest users, we have chosen their key pairs ourselves and thus know their secret keys.
Again, by the SimExt of the signature of knowledge, with overwhelming probability, we can extract a
valid witness for the statement (pk,R, c) ∈ LRsig from σSoK, from which we obtain (vk, sk) such
that vk := f(sk) ∈ R. We use this to break the one-wayness of f which contradicts the security of
the function f .

Lemma 8. The accountable ring signature scheme in Fig. 3 is traceable.

Proof. By the security of the signature of knowledge, we are able to extract a valid witness from σSoK

part of the valid signature σ = (c, σSoK) the adversary outputs. The witness thus satisfies vk = f(sk)
where vk ∈ R ⊂ VK, pk ∈ PK and c = Enc(pk, vk; r) for some r ∈ Rnd and sk ∈ SK.

Since pk = PKEGen(gk; dk), we see from pk 6= ⊥ that dk ∈ DK. Correctness of the encryption
algorithm implies that Dec(dk, c) = vk, which is the first part of the opening algorithm’s output. Now
the opening algorithm has a statement (pk, c, vk) and a corresponding witness dk. By the completeness
of the NIZK proof system, ψ will verify correctly. This means that the Judge algorithm will output 1
which is a contradiction.

Lemma 9. The construction satisfies tracing soundness if SoK is SimExt secure, the NIZK proof system
is sound and the encryption scheme is perfectly correct.

Proof. The SimExt security of the signature of knowledge ensures that from any signature σSoK (w.r.t.
a statment s) output by the adversary, we can extract a valid witness w such that (s, w) ∈ Rsig which
eliminates the case that the adversary forges a signature for a statement s∗ /∈ LRsig . If this is not the case,
we can use such an adversary to construct another adversary against the SimExt security of the signature
of knowledge.

The soundness of the NIZK system for the relationRopen ensures that ciphertext c contained in the
ring signature decrypts to vk, which eliminates the case that the adversary can produce a proof ψ for a
statement s∗ /∈ LRopen . Finally, the perfect correctness of the public-key encryption scheme (which is
regarded as a perfectly-binding commitment scheme) ensures that a ciphertext has a unique decryption.

B Security proofs of ourΣ-protocols

B.1 Proof of Lemma 1

Proof. Perfect completeness follows by inspection. The SHVZK simulator, given a challenge x, can
simulate the transcript by picking f0,1, . . . , fm−1,n−1, zA, zC ← Zq, C ← G and computing fj,0 := x−∑n−1

i=1 fj,i, A := Comck(f0,0, . . . , fm−1,n−1, zA)B−x, D = Comck({fi,j(x − fi,j)}m−1,n−1
i,j=0 ; zC)C−x.

In both simulations and real proofs, f0,1, . . . , fm−1,n−1, zA, zC and C are independent, uniformly ran-
dom and uniquely determine {fj,0}m−1

j=0 , A,D, so the simulation is perfect. We also have quasi-unique
responses, since two different valid answers f0,1, . . . , fm−1,n−1, zA, zC and f ′0,1, . . . , f

′
m−1,n−1, z

′
A, z

′
C

to one challenge would break the binding property of BxA and CxD.
We prove 3-special soundness in three parts. First, we show that any answers to 3 (actually 2)

different challenges provide an opening of B. Second, we show that these answers imply that com-
mitted values are bits. Finally, we show that they imply that the sum of the committed values is 1.
For the first part, suppose that a prover has answered two different challenges x and x′ correctly
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with answers (f0,1, . . . , fm−1,n−1, zA, zC) and (f ′0,1, . . . , f
′
m−1,n−1, z

′
A, z

′
C). Since we have BxA =

Comck(f0,0, . . . , fm−1,n−1; zA) and Bx′A = Comck(f ′0,0, . . . , f
′
m−1,n−1; z

′
A), from the first verification

equation we haveBx−x′ = Comck(f0,0−f ′0,0, . . . , fm−1,n−1−f ′m−1,n−1; zA−z′A). Thus bi,j =
fi,j−f ′i,j
x−x′ ,

with r = zA−z′A
x−x′ , gives us an opening of B. The first verification equation also gives an opening

(a0, . . . , a0; rA) of A using aj,i = fj,i − xbj,i and rA = zA − xr. Note that by the binding properties of
the commitment scheme, the prover cannot know a second opening of A or B, and must respond to any
challenge with fj,i = bj,ix+ aj,i. We can get openings of C and D to values cj,i, dj,i from the second
equation in a similar way.

By the second verification equation, the values satisfy cj,ix+dj,i = fj,i(x−fj,i) = bj,i(1− bj,i)x2 +
(1− 2bj,i)aj,ix− a2

j,i. If this holds for three different x, x′ and x′′ then the polynomials are identical. So,
bj,i(1− bj,i) = 0 and bj,i ∈ {0, 1} for all i, j.

By construction we have
∑n−1

i=0 fj,i =
∑n−1

i=0 bj,ix+
∑n−1

i=0 aj,i = x for all j = 0, . . . ,m− 1. This
holds for two challenges x and x′. Therefore

∑n−1
i=0 bj,i = 1. ut

B.2 Proof of Lemma 2

Proof. First we prove perfect completeness. By the perfect completeness of the Σ-protocol in Fig. 4 we
have that V1 always accepts. Correctness of the last equation follows from the homomorphic property of
ElGamal encryption since

N−1∏
i=0

c

Qm−1
j=0 fj,ij

i ·
m−1∏
k=0

G−x
k

k =
N−1∏
i=0

c
pi(x)
i ·

m−1∏
k=0

(
N−1∏
i=0

c
pi,k

i · Enc(1; ρk)

)−xk

=
N−1∏
i=0

c
pi(x)
i ·

m−1∏
k=0

(
N−1∏
i=0

c
−pi,kx

k

i · Enc(1;−xkρk)

)

=
N−1∏
i=0

c
pi(x)
i ·

N−1∏
i=0

c
−

Pm−1
k=0 pi,kx

k

i · Enc

(
1;−

m−1∑
k=0

xkρk

)

=
N−1∏
i=0

c
δ`,ix

m

i · Enc

(
1;−

m−1∑
k=0

xkρk

)

= cx
m

` Enc

(
1;−

m−1∑
k=0

xkρk

)

= Enc(1; rxm) · Enc

(
1;−

m−1∑
k=0

xkρk

)
= Enc(1; z).

We now describe a special honest verifier zero-knowledge simulator. It chooses B ← G and
G1, . . . , Gm−1 ← G2. It runs the SHVZK simulator forP1 to simulateA,C,D, zA, zC , f0,1, . . . , fm−1,n−1

and computes the fj,0’s accordingly. It picks z ← Zq and computes G0 from the last verification equation.
By the DDH assumption, G1, . . . , Gm−1 in a real proof are indistinguishable from picking random

pairs in G2 as in the simulation. We get independent, uniformly random B and z in both real proofs
and simulations. By the perfect SHVZK of the simulator for P1 we also have the same distribution
of A,B,C, fj,i, zA, zC as in a real proof. Finally, G0 is uniquely determined by the last verification
equation in both real proofs and in simulations, so the two are indistinguishable. The last verification
equation uniquely determines z, thus quasi-unique responses follow from the quasi-unique responses of
the underlying Σ-protocol forR1.
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Now we prove the protocol is (m+ 1)-special sound. Suppose an adversary can produce (m+ 1)
different accepting responses (f (0)

j,i , z
(0)), . . . , (f (m)

j,i , z
(m)) with respect to m + 1 different challenges

x(0), . . . , x(m) and the same initial message. Assume that m > 1. We use 3-special soundness of the
Σ-protocol forR1 to extract openings δ`j ,i, aj,i for B and A with δ`j ,i ∈ {0, 1} and

∑n−1
i=0 δ`j ,i = 1. The

openings define ` :=
∑m−1

j=0 `jn
j , where `j is the index of the only 1 in the sequence (δ`j ,0, . . . , δ`j ,n−1).

Following the proof, all answers satisfy f (e)
j,i = δ`j ,ix

(e) + aj,i for 0 ≤ e ≤ m, with overwhelming
probability due to the binding property of the commitment scheme.

From δ`j ,i, aj,i we can compute the polynomials pi(x) =
∏m−1
j=0 (δ`j ,ix + aj,i). Note that p`(x) is

the only such polynomial with degree m in x. Based on this observation we rewrite the last verification
equation as: cx

m

` ·
∏m−1
k=0 G̃

xk

k = Enc(1; z). Here the G̃k values are derived from the initial statement
and δ`j ,i, aj,i. This equation holds for x(0), . . . , x(m). Consider the Vandermonde matrix with the eth
row given by (1, x(e), . . . , (x(e))m). The x(e) values are distinct, so the matrix is invertible. We can
thus obtain a linear combination θ0, . . . , θn of the rows producing the vector (0, . . . , 0, 1). We deduce

c` =
∏m
e=0

(
c
(x(e))

m

` ·
∏m−1
k=0 G̃

(x(e))
k

k

)θe

= Enc
(
1;
∑m

e=0 θez
(e)
)
, which provides an opening of c` to

the plaintext 1 with randomness r =
∑m

e=0 θez
(e). ut

B.3 Proof of Lemma 3

Proof. Perfect completeness follows by direct verification and the perfect completeness of (P2,V2). The
SHVZK simulator chooses za, zb, zs ← Zq and d← G2 at random and computes A,B from the verifica-
tion equations. It runs the perfect SHVZK simulator for P2 to get a2 and z2. By the DDH assumption, d
is indistinguishable from the ciphertexts in the real proof. In Both real proofs and simulations, za, zb, zt
are uniformly random and uniquely determine A,B giving us SHVZK. Since the verification equations
uniquely determine za, zb and zs and (P2,V2) has quasi-unique responses, so must this protocol.

For (m+ 1)-special soundness, consider accepting answers za, zb, zs and z′a, z
′
b, z
′
s to distinct chal-

lenges x and x′. From the first verification equation we get cx−x
′

= Encpk(gzs−z′s ; za − z′a) giving
sk = zs−z′s

x−x′ and r = za−z′a
x−x′ . The second verification equation gives dx−x

′
= Encpk(gzs−z′s ; zb − z′b)

so d also encrypts gsk. Finally, (m + 1)-special soundness of the Σ-protocol for R2 then shows that
gsk ∈ R. ut

B.4 Proof of Lemma 5

Proof. Perfect completeness follows by direct verification. The SHVZK simulator picks z ← Zq and com-
putesA,B from the verification equations. Both in real proofs and simulated proofs z is uniformly random
and the verification equations determine the initial message uniquely, so we have perfect simulation. As
the first verification equation determines z we have unique responses.

For 2-special soundness, let z and z′ be accepting answers to distinct challenges x, x′. The first
verification equation gives pkx−x

′
= gz−z

′
, so dk= z−z′

x−x′ . The second gives ux−x
′
=(v/vk)z−z

′
, which

shows u=(v/vk)dk. Thus, vk was encrypted in (u, v). ut
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