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Abstract. The proliferation of small embedded devices having growing but still limited computing and data
storage facilities, and the related development of cloud services with extensive storage and computing means,
raise nowadays new privacy issues because of the outsourcing of data processing. This has led to a need for
symmetric cryptosystems suited for hybrid symmetric-FHE encryption protocols, ensuring the practicability of
the FHE solution. Recent ciphers meant for such use have been introduced, such as LowMC, Kreyvium, FLIP,
and Rasta. The introduction of stream ciphers devoted to symmetric-FHE frameworks such as FLIP and its recent
modification has in its turn posed new problems on the Boolean functions to be used in them as filter functions. We
recall the state of the art in this matter and present further studies (without proof) 3 .

1 Introduction

The cloud has become nowadays an unavoidable complement to a variety of embedded devices such as
mobile phones, smart cards, smart-watches, as these cannot perform all the storage and computing needed
by their use. This raises a new privacy concern: it must be impossible to the cloud servers to learn about the
data of the users. The first scheme of fully homomorphic encryption (FHE) realized by Gentry [Gen09] gives
a solution to this problem by providing an encryption scheme CH preserving both operations of addition
and multiplication:

CH(m+m′) = CH(m)�CH(m′); CH(mm′) = CH(m)�CH(m′). (1)

Then, combining these two operations allows to evaluate any polynomial over the algebraic structure where
m and m′ live, allowing to perform any computation if this structure is a finite field, or even if it is a vector
space over a finite field, since we know that any function over such structure is (univariate, resp. multivariate)
polynomial (see [KLP06]). Let us recall how such scheme can be used if one wants to compute the image
of some data by some function, and needs the help of the cloud for that. We first represent the data by
elements mi of a finite field Fq (or a ring but we shall restrict ourselves to a field), where i ∈ I ⊆ N; the
function, transposed as a function over FI

q , that we shall denote by F (mi, i ∈ I), becomes then a polynomial,
according to what we recalled above (or according to the fact that the vector space FI

q can be identified with
the field Fq|I|). If one needs the help of the cloud for the computation, it is sufficient to send CH(mi) for
i ∈ I to the cloud server, which will compute F (CH(mi), i ∈ I). Thanks to (1), this value will equal
CH(F (mi, i ∈ I)) and decryption by the owner of the private decryption key will provide F (mi, i ∈ I),
and the server will have not learned anything about the mi nor about F (mi, i ∈ I). The computation to
perform is transposed as a function F over this field since the homomorphic operations allowed by a FHE
scheme are only defined for this field (or ring), and it does not allow to perform other operations using
different representation of the data. For example, a FHE scheme for plaintexts from (F2n ,+,×) cannot
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handle the plaintexts as elements from Fn
2 , therefore in this case any computation is evaluated based on the

univariate representation.
But the theoretical solution we just described is not practical by itself, because the repetitive use of
homomorphic encryption (and even in most cases a single use!) requires itself too much computational
power and storage capacity than what can offer a device like those listed above. In practice, FHE schemes
come from noise-based cryptography such as schemes relying on the learning with errors assumption
[Reg05]. Each ciphertext contains an error part, also called noise, hiding the relation with the plaintext
and the secret key. When a plaintext is encrypted, the error corresponds to a vector of low norm, and a
ciphertext can be decrypted correctly until the amount of noise reaches a fixed bound. When homomorphic
operations are performed on ciphertexts, the noise increases. The cornerstone of FHE is a function called
bootstrapping, that allows to obtain a ciphertext for m with a low noise from a noisy ciphertext of m.
This function corresponds to homomorphically performing the decryption of the FHE scheme and requires
an extra key. Bootstrapping is the most costly algorithm of a FHE cryptosystem in terms of computation
and storage, and two different strategies are used to get around this bottleneck. The most spread strategy
consists in minimizing the number of bootstrappings during an evaluation; the parameters are taken to allow
a bounded number of operations (or levels) on fresh ciphertexts before bootstraping. The best performances
are obtained by expressing the functions to evaluate in a way minimizing the noise growth. A more
recent strategy initiated by [DM15], later referred as gate-bootstrapping, performs a bootstrapping at each
operation, amortizing the cost by combining the two functions (the operation and the bootstrapping) at once.
Such strategy can lead to good performances when function F can be evaluated as a circuit with a limited
number of gates. For both strategies, some functions F imply a low noise growth (and can be qualified
as homomorphic-friendly, but the functions qualified this way in the title of this paper are also functions
involved in the hybrid symmetric-FHE encryption itself; they need then extra properties, see below); these
functions depend on the particular FHE scheme chosen.
The main drawback of FHE constructions is the huge expansion factor, the ratio between the size of the
plaintext (in bits) and the size of the corresponding ciphertexts. The expansion factor can be as big as
1.000.000, and it implies the major constraints for small devices. Indeed, doing computations on small
devices with these ciphertexts is challenging, and only a limited number of homomorphic ciphertexts can
be handled at the same time. A solution to this problem for the user, traditionally called Alice, is to use a
hybrid symmetric-FHE encryption protocol:

1. Alice sends to the server her public key pkH associated to the chosen homomorphic encryption protocol
and the ciphertext CH(skS) corresponding to the homomorphic encryption of her key skS associated to
a chosen symmetric encryption scheme CS ,

2. she encrypts her data m with CS , and sends CS(m) to the server,
3. the server computes CH(CS(m)) and homomorphically evaluates the decryption of the symmetric

scheme on Alice’s data; it obtains CH(m),
4. the server homomorphically executes polynomial function F on Alice’s data, and obtains CH(F (m)),
5. the server sends CH(F (m)) to Alice who obtains F (m) by decrypting (whose operation is much less

costly than encrypting in FHE).

Such symmetric-FHE framework allows Alice to circumvent the huge costs implied by the expansion factor.
In this context she uses homomorphic encryption only in the first step (on a small data, the symmetric
key), and then she uses symmetric encryption and homomorphic decryption. Both of these algorithms
are operations that can be efficiently performed on limited devices. Consequently, the performance of
the whole hybrid framework is mainly determined by the third and fourth steps. Since the homomorphic
evaluation of the symmetric decryption algorithm is independent of the applications wanted by Alice, one
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natural goal consists in making its over-cost as low as possible. It would make correspond the time cost of
the framework to the computations of the fourth step only, linking the performances to the complexity
of computations delegated. As explained above, for reasons of efficiency, the choice of the symmetric
cipher itself CS is central in this matter, since its decryption should keep as low as possible the noise
of homomorphic ciphertexts. The error-growth given by the basic homomorphic operations is different for
each FHE scheme but some general trends can be exhibited, therefore giving guidelines to understand which
symmetric schemes are homomorphic-friendly. For the schemes often qualified as second generation such
as [BV11,BGV12,FV12], the sum corresponds to adding the noises whereas the error produced in a product
is way more important. Each level in the tree representing the multiplication corresponds to a level of noise
( [HS14]), hence the final noise is often well approximated by relating it to the multiplicative depth of
the circuit evaluated, or equivalently, dlog(d)2e where d is the degree of the (univariate, resp. multivariate)
polynomial evaluated (note that there is no ambiguity on the degree since the homomorphic operations are
valid over one field or ring only, therefore allowing only one representation). The homomorphic-friendly
functions for this generation are the ones with a low multiplicative depth (and a bounded number of
additions). For the schemes following the blueprint of [GSW13] such as [KGV14, CGGI16], referred as
third generation, the error-growth of a product is asymmetric in the input ciphertexts. This property allows
to obtain a small noise for the result of many products, with some limitations. More precisely, products
of ciphertexts where always one (of both) has a small noise results in a small noise. This more complex
error-growth gives access to other homomorphic-friendly functions, beyond the restrictions of very small
degree. Examples of homomorphic-friendly functions for this generation are given by the sums of successive
products, or combinations of multiplexers using a fresh variable.
When the decryption function of a symmetric scheme is evaluated as a polynomial in one field rather
than combining computations over different representations, such as alternating operations from Fn

2 to
Fn
2 and operations from F2n to F2n on a value from the same register, it often leads to a high degree

and many terms. For example, the multiplicative depth of AES is often too large, and its additive depth
is still more, to efficiently evaluate it homomorphically. Thus, other symmetric encryption schemes have
been proposed in the context of symmetric-FHE frameworks: some block ciphers, like LowMC [ARS+16],
Rasta and Agrasta [DEG+18], and stream ciphers such as Kreyvium [CCF+16]. These solutions have
drawbacks: Kreyvium becomes more and more expensive during the encryption since the noise in the
produced ciphertexts increases (or the system has to be reboot often). LowMC provides low noise at each
round, but the iteration of rounds makes it unadapted, as almost any other block cipher since the lower bound
on the round number for security reverberates on the homomorphic evaluation. We can observe this impact
by studying how they can work with HElib [HS14] for instance, where the number of homomorphic levels
required is always at least the number of rounds. This is however a minor drawback in this generation (HElib
implements the FHE of [BGV12]) for Rasta and Agrasta, since they allow a very small number of rounds.
These schemes are also well adapted for multiparty computation, but not for all FHE, for example their high
number of sums are not well suited for the third generation. In this paper, we focus our study on symmetric
encryption schemes that could be tailored for any FHE scheme, and more precisely on the functions used in
these homomorphic-friendly constructions.

The FLIP cipher is an also very efficient encryption scheme, described in [MJSC16], which tries to
minimize the noise involved in homomorphic evaluation. More precisely it intents to optimize the parameters
mentioned above, targeting the most homomorphic-friendly functions which are sufficient to ensure security
(for example minimizing the multiplicative depth). This scheme is based on a new stream cipher model,
called the filter permutator (see Figure 1). It consists in updating at each clock cycle a key register by
a permutation of the coordinates. A pseudorandom number generator (PRNG) pilots the choice of the

2



permutation. The permuted key is then filtered, like in a classical stream cipher, by a Boolean function
f whose output provides the keystream. Note that the input to f is the whole key register and this is a
difference with the classical way of using filter functions. Applying the non-linear filtering function directly
on the key bits allows to greatly reduce the noise level in the framework of hybrid symmetric-FHE encryption
protocols. More precisely, the noise is given by the evaluation of one function only: the filtering function,
rather than by the combination of all the functions used in the decryption algorithm as for other schemes. In
theory, there are no big differences between the filter model and the filter permutator: the LFSR is simply
replaced by a permutator. Nevertheless, in practice there are huge differences since the filter function has
hundreds of input bits instead of about 20.

. Key register K

Pi

f

plaintext

ciphertext

PRNGIV

Gen.
Perm.

Fig. 1. Filter permutator construction.

In the versions of the cipher proposed in [MJSC16], the function f has n = n1 + n2 + n3 ≥
500 variables, where n2 is even and n3 equals k(k+1)

2 t for some integers k and t. The functions
f(x0, . . . , xn1−1, y0, . . . , yn2−1, z0, . . . , zn3−1) is defined as:
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2
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where the triangular function Tk is defined as:

Tk(z0, . . . , zj−1) = z0 + z1z2 + z3z4z5 + · · ·+ z k(k−1)
2

· · · z k(k+1)
2
−1.

The filter permutator has been improved in [MCJS19] (see Figure 2). There are two modifications. Firstly,
at each clock cycle, the function is applied on a part of the key rather than on the whole key register and,
secondly, a public vector (called whitening) is added before the computation of f . The subset of the key
register used and the whitening are derived from the PRNG’s output at each clock cycle, like the permutation.
These modifications have no impact on the noise when the cipher decryption is homomorphically evaluated,
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the final noise is the one given by the evaluation of f only. On the security side, the resulting register
extension allows to obtain the same security with simpler functions, and the whitening allows to temper the
attacks using guess-and-determine strategies. The combination of both makes possible to study the security
more easily, relating it with the Boolean cryptographic criteria of f , and those of the functions obtained by
fixing variables in the input to f .

. Key register K
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Fig. 2. Improved filter permutator construction.

The attacks which classically apply on the filter model, or slightly modified ones, can apply on the filter
permutator or its improved version. Then, the usual Boolean cryptographic criteria have to be taken into
consideration for the choice of f . More precisely, for algebraic attacks or variants, the parameters of
algebraic immunity, fast algebraic immunity, and number of annihilators of minimal algebraic degree are
important. Standard correlation attacks do not apply on these models, but some variations can; this motivates
to address the resiliency and nonlinearity of f . Since, unlike the filter model, the key register in the filter
permutator is not updated, guessing some key bits importantly simplifies the system of equations given by
the keystream. It makes attacks using guess-and-determine strategies more efficient [DLR16] than regular
ones. Bounding the complexity of these attacks necessitates to determine the cryptographic parameters of
the functions obtained by fixing various variables in f . These security considerations bring us to focus on
families of functions with more variables than usually and whose sub-function parameters can be determined
or at least be efficiently bounded.

4



In this article we give without proof the relevant cryptographic parameters for two families of
homomorphic-friendly functions. Functions from these families enable to securely instantiate the filter
permutator or the improved filter permutator, and allow a very efficient homomorphic evaluation.

2 Preliminaries.

For readability we use the notation + instead of ⊕ to denote addition in F2. We denote {1, . . . , n} by [n].

2.1 Boolean Functions and Cryptographic Criteria.

Boolean Functions. We recall here some core notions on Boolean functions in cryptography, restricting
our study to the single-output Boolean functions.

Definition 1 (Boolean Function). A Boolean function f in n variables is a function from Fn
2 to F2. The set

of all Boolean functions in n variables is denoted by Bn. We call pseudo-Boolean function a function with
input space Fn

2 but output space different from F2 (e.g. R).

Definition 2 (Algebraic Normal Form (ANF)). We call Algebraic Normal Form of a Boolean function f
its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1+x1, . . . , x

2
n+xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2.

Every Boolean functions has a unique ANF. The degree of this unique ANF is called the algebraic degree
of the function and denoted by deg(f).

Boolean Criteria. In this part, we recall the main cryptographic properties of Boolean functions, mostly
taken from [Car10]: balancedness, resiliency, nonlinearity, algebraic immunity, fast algebraic immunity and
minimal degree annihilator space’s dimension.

Definition 3 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if its output is uniformly
distributed over {0, 1}.

Definition 4 (Resiliency). A Boolean function f ∈ Bn is called m-resilient if any of its restrictions obtained
by fixing at most m of its coordinates is balanced. We denote by res(f) the maximum resiliency (also called
resiliency order) of f and set res(f) = −1 if f is unbalanced.

Definition 5 (Nonlinearity). The nonlinearity NL(f) of a Boolean function f ∈ Bn, where n is a positive
integer, is the minimum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

with dH(f, g) = #{x ∈ Fn
2 | f(x) 6= g(x)} the Hamming distance between f and g, and g(x) = a · x+ ε;

a ∈ Fn
2 , ε ∈ F2 (where · is some inner product in Fn

2 ; any choice of an inner product will give the same
value of NL(f)).
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Definition 6 (Algebraic Immunity and Annihilators). The algebraic immunity of a Boolean function f ∈
Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1).
We additively use the notation AN(f) for the minimum algebraic degree of non null annihilator of f :

AN(f) = min
g 6=0
{deg(g) | fg = 0}.

We also use the notation DAN(f) for the dimension of the vector space made of the annihilators of f of
degree AI(f) and the zero function. Note that, for every function f we have DAN(f) ≤

(
n

AI(f)

)
, because

two distinct annihilators of algebraic degree AI(f) cannot have in their ANF the same part of degree AI(f)
(their difference being itself an annihilator).

Definition 7 (Fast Algebraic Immunity [ACG+06]). The fast algebraic immunity of a Boolean function
f ∈ Bn, denoted as FAI(f), is defined as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

deg(g) + deg(fg)}.

Families of Boolean Functions. In the very constrained framework in which we are, where we need to
maximize the ratio security

complexity of our functions in a much more drastic way than for classical stream ciphers,
we highlight three families of functions: direct sum of monomials, threshold functions, and XOR-Threshold
functions. We begin by introducing the secondary construction (i.e. construction of functions using already
defined functions as building blocks) called direct sum, which will lead to the first of these families. This
secondary construction is usually considered as unadapted to the design of cryptographic Boolean functions,
because the decomposability of the functions it provides may be used in attacks. But in our framework, the
number of variables is more than 500 (while in classical stream ciphers it is about 20) and this changes
the situation. Moreover, the direct sum will lead us to a quite interesting class of functions (direct sums of
monomials), well adapted to our framework, and for which we shall be able to determine the cryptographic
parameters of all functions in the class. This is the first time that all functions in a whole class of functions
can be evaluated (with the exception of the Maiorana-McFarland class, see [Car10], but the functions in
this latter class do not have quite good algebraic immunity). Before, the contributions of the papers were to
construct functions achieving provably good characteristics; the corresponding classes contained only one or
at most a few functions in each number of variables. Concretely, in most cases, these functions had optimal
algebraic immunity (this was necessary because of the rather small number of variables). Here we shall have
much more flexibility for the choice of functions within the class.

Definition 8 (Direct Sum). Let f be a Boolean function of n variables and g a Boolean function of m
variables, f and g depending on distinct variables, the direct sum h of f and g is defined by:

h(x, y) = f(x) + g(y), where x ∈ Fn
2 and y ∈ Fm

2 .

The direct sum has been generalized into the indirect sum (see [Car10]) which provides more complex
functions, better adapted to classical stream ciphers. It seems that using the indirect sum does not allow to
have simple enough functions for our framework nor to determine exactly the cryptographic parameters of
all the functions in a class. We focus more precisely on direct sums of monomials, which consist of functions
where each variable appears at most once in the ANF.
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Definition 9 (Direct Sum of Monomials). Let f be a non constant Boolean function of n variables, we call
f a Direct Sum of Monomials (or DSM) if the following holds for its ANF:

∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.

Definition 10 (Direct Sum Vector [MJSC16]). Let f be a DSM, we define its direct sum vector:

mf = [m1,m2, . . . ,mk],

of length k = deg(f), where mi is the number of monomials of degree i, i > 0, of f :

mi = |{aI = 1, such that |I| = i}|.

The function f associated to the direct sum vector mf = [m1,m2, . . . ,mk] has M =
∑k

i=1mi monomials
in its ANF and has N ≥

∑k
i=1 imi variables.

As we wrote, we shall be able to determine all parameters of all functions in this class.
We also define the family of threshold functions, which is a super-class of that of majority functions.

Definition 11 (Threshold Function). For any positive integers d ≤ n + 1 we define the Boolean function
Td,n as:

∀x = (x1, . . . , xn) ∈ Fn
2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.

Definition 12 (Majority Function). For any positive odd integer n we define the Boolean function MAJn
as:

∀x = (x1, . . . , xn) ∈ Fn
2 , MAJn(x) =

{
0 if wH(x) ≤ bn2 c,
1 otherwise.

Note that threshold functions are symmetric functions (changing the order of the input bits does not
change the output), which have been the focus of many studies e.g. [Car04, CV05, DMS06, QLF07, SM07,
QFLW09]. Note also that MAJn = Tdn+1

2
e,n. These functions can be described more succinctly through the

simplified value vector.

Definition 13 (Simplified Value Vector). Let f be a symmetric function in n variables, we define its
simplified value vector:

s=[w0, w1, . . . , wn]

of length n, where for each k ∈ {0, . . . , n}, wk = f(x) where wH(x) = k, i.e. wk is the value of f on all
inputs of Hamming weight k.

Note that for a threshold function, we have wk = 0 for k < d and 1 otherwise, so the simplified value
vector of a threshold function Td,n is the n+1-length vector of d consecutive 0’s and n+1− d consecutive
1’s.

We will also be interested in functions obtained by a direct sum of a linear direct sum of monomials and
a threshold function, called XOR-THR (or XOR-MAJ when the threshold function happens to be a majority
function).

Definition 14 (XOR-THR Function). For any positive integers k, d and n such that d ≤ n + 1 we define
XORk + Td,n for all z = (x1, . . . , xk, y1, . . . , yn) ∈ Fk+n

2 as:

(XORk + Td,n)(z) = x1 + · · ·+ xk + Td,n(y1, . . . , yn) = XORk(x) + Td,n(y).
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Boolean Functions and Bit-Fixing. In this part, we give the necessary vocabulary relatively to bit-fixing
(as defined e.g. in [AL16]) on Boolean functions, the action consisting in fixing the value of some variables
of a Boolean function and then considering the resulting Boolean function. These notions are important
when guess-and-determine attacks are investigated.

Definition 15 (Bit-fixing Descendant). Let f be a Boolean function in n variables (xi, for i ∈ [n]), let `
be an integer such that 0 ≤ ` < n, let I ⊂ [n] be of size ` (i.e. I = {i1, . . . , i`} with ij < ij+1 for all
j ∈ [`− 1]), and let b ∈ F`

2, we denote as fI,b the `-bit fixing descendant of f on subset I with binary vector
b the Boolean function in n− ` variables:

fI,b(x
′) = f(x) | ∀j ∈ [`], xij = bj ,

where x′ = (xi)i∈[n]\I .

Definition 16 (Bit-fixing Stability). Let F be a family of Boolean functions, F is called bit-fixing stable,
or stable relatively to guess and determine, if for all functions f ∈ F such that f is a n-variable function
with n > 1, the following holds:

– for all number of variables ` such that 0 ≤ ` < n,
– for all choice of positions 1 ≤ i1 < i2 < · · · < i` ≤ n,
– for all value of guess (b1, . . . , b`) ∈ F`

2,

at least one of these properties is fulfilled: fI,b ∈ F , or fI,b + 1 ∈ F , or deg(fI,b) = 0.

Remark 1. Both DSM and XOR-THR functions are bit-fixing stable families (as well as the set of threshold
functions). Therefore, if the cryptographic parameters of any functions of one of these families are
determined then the complexity of all attacks using guess-and-determine strategies on any filtering function
of this family can be derived.

3 Parameters of Direct Sums of Monomials.

In this section we give the relevant parameters relatively to Boolean cryptographic criteria of DSM functions.
The DSM are a generalization of triangular and FLIP functions [MJSC16]. Their very sparse ANF is the
reason why they are homomorphic-friendly. Note that such function in n variables can be computed with
at most n − 1 additions and multiplications. Regarding the satisfaction of the constraints of the second
generation of FHE schemes, secure functions can have a multiplicative depth as low as 2 or 3 ( [MCJS19]).
Focusing on the third generation, each monomial of the ANF can be evaluated as a serial multiplication of
freshy encrypted ciphertexts, then the whole function is evaluated as a sum of multiplicative chains, giving
an error-growth quasi-additive in n ( [MCJS19]).

On the cryptographic point of view, the DSM can be obtained by recursively applying the direct sum
construction, which is convenient to determine the resiliency and nonlinearity, but not to study the exact
behavior of the algebraic properties such as the algebraic immunity and the dimension of annihilators (non
null) of minimal degree.

First we recall some properties on direct sums (see e.g. [MJSC16]).

Lemma 1 (Direct Sum Properties ( [MJSC16] Lemma 3)). Let F be the direct sum of f and g with n and
m variables respectively. Then F has the following cryptographic properties:

1. Resiliency: res(F ) = res(f) + res(g) + 1.
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2. Non Linearity: NL(F ) = 2mNL(f) + 2nNL(g)− 2NL(f)NL(g).
3. Algebraic Immunity: max(AI(f),AI(g)) ≤ AI(F ) ≤ AI(f) + AI(g).
4. Fast Algebraic Immunity: FAI(F ) ≥ max(FAI(f),FAI(g)).

The previous lemma is sufficient to determine the resiliency and the nonlinearity of any direct sums of
monomials.

Lemma 2 (Resiliency of Direct Sum of Monomials). Let f ∈ Fn
2 be a Boolean function obtained by direct

sums of monomials with associated direct sum vector = [m1, . . . ,mk], its resiliency is:

res(f) = m1 − 1

Lemma 3 (Nonlinearity of Direct Sum of Monomials). Let f ∈ Fn
2 be a Boolean function obtained by

direct sums of monomials with associated direct sum vector mf = [m1, . . . ,mk], its nonlinearity is:

NL(f) = 2n−1 −
1

2

(
2(n−

∑k
i=2 imi)

k∏
i=2

(
2i − 2

)mi

)
Now, we give the algebraic immunity, a lower bound on the FAI and an upper bound on th DAN of a

direct sum of monomials.

Theorem 1 (Algebraic Immunity of Direct Sums of Monomials). Let f ∈ Fn
2 be a Boolean function

obtained by direct sums of monomials with associated direct sum vector mf = [m1, . . . ,mk], its algebraic
immunity is:

AI(f) = min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

Lemma 4 (Fast Algebraic Immunity of Direct Sums of Monomials). Let f ∈ Fn
2 be a Boolean function

obtained by the direct sum of monomials with associated direct sum vector mf = [m1, . . . ,mk] such that
AI(f) = deg(f), and AI(f) > 1, its fast algebraic immunity is:

FAI(f) =

{
AI(f) + 1 if mk = 1,

AI(f) + 2 otherwise.

Note that this lemma does not consider the case AI(f) = 1 (of linear functions or monomial functions),
for this case the fast algebraic immunity is not very relevant as the algebraic attack already targets a linear
system.

Theorem 2. Let f be a DSM with associated direct sum vector mf = [m1, . . . ,mk]. Let us consider the
set Sd(f) such that:

Sd(f) =

{
{0 ≤ d ≤ k | d+

∑
i>dmi = AI(f)} if m1 6= 1,

{0 < d ≤ k | d+
∑

i>dmi = AI(f)} if m1 = 1.

Then, we have the following relation:

DAN(f) ≤
∑

d∈Sd(f)

k+1∏
i>d

imi .

Note that when AN(f) = AI(f) the bound is reached.

This formula gives a tight upper bound on the dimension of the annihilators of a DSM.
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4 Parameters of Threshold, and XOR-THR Functions.

In this section we exhibit the parameters of threshold functions and xor-threshold functions. The threshold
functions are a generalization of majority functions, which are known to reach the optimal algebraic
immunity. Despite a very dense ANF, other representations can lead to low noise ciphertexts, as shown
in [MCJS19] inspired by branching programs. Using multiplexers, the noise for third generation schemes is
quasi additive in the number n of variables of the threshold function. Combining it in direct sum with a xor
function allows to compensate the resiliency, and also to connect it with the predicates considered secure to
instantiate local PRGs ( [Gol00], [App13]). Therefore, the xor-threshold functions are appealing as filtering
functions, and the threshold functions are an intermediate step to exhibit the cryptographic parameters of
xor-threshold functions. Regarding homomorphic evaluation, the noise mostly depends on the threshold
part, therefore for the third generation the noise is quasi additive in the number of variables. Focusing on
the second generation of FHE, secure instantiations from xor-threshold functions can be chosen with a
multiplicative depth between 3 and 7 ( [MCJS19]).

On the cryptographic point of view, the parameters of majority functions are well investigated, but lesser
is known on the properties of threshold functions in general, such as their nonlinearity. The direct sum with
a xor function allows to derive the resiliency and nonlinearity from the parameters of the threshold function.
Nevertheless, the exact immunity and dimension of annihilators (non null) of minimal degree require more
than the general results of direct sum constructions.

4.1 Threshold Functions

Threshold functions are symmetric functions, which have been much studied relatively to cryptographic
significant criteria (e.g. [CV05]). The existence of optimal symmetric functions relatively to a specific
criterion has been widely investigated, but the class of symmetric functions is too wide for their parameters
to be studied globally; here we focus on the exact parameters of the subfamily of threshold function.

We first give the resiliency and nonlinearity of such functions.

Lemma 5 (Resiliency of Threshold Functions). Let f be the threshold function Td,n,

res(Td,n) =

{
0 if n = 2d− 1,

−1 otherwise.

Theorem 3 (Nonlinearity of Threshold Functions). Let n be a non null positive integer, the threshold
function Td,n has the following nonlinearity:

NL(Td,n) =



2n−1 −
(

n−1
(n−1)/2

)
if d = n+1

2 ,
n∑

k=d

(
n

k

)
= wH(Td,n) if d > n+1

2 ,

d−1∑
k=0

(
n

k

)
= 2n − wH(Td,n) if d < n+1

2 .

We then investigate the algebraic immunity of threshold functions. As Boolean functions used for
cryptography, the majority functions have been introduced as functions reaching the optimal algebraic
immunity (case of T(n+1)/2,n and Tn/2+1,n as proven in [BP05,DMS06]), but their nonlinearity is not good.
As far as we know, the exact algebraic immunity have not been investigated for all threshold functions, but
it can be determined in various ways as for the majority functions.
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Lemma 6 (Algebraic Immunity of Threshold Functions). Let n be a non null positive integer, the
threshold function Td,n has the following algebraic immunity:

AI(Td,n) = min(d, n− d+ 1).

Lemma 7 (DAN of Threshold Functions). Let n be a non null positive integer, the threshold function Td,n

has the following DAN:

DAN(Td,n) =

{
0 if d < n+1

2 ,(
n

d−1
)

if d ≥ n+1
2 .

Corollary 1 (Lower Bound on the Fast Algebraic immunity of Threshold Functions). Let n be a non
null positive integer, the fast algebraic immunity of the threshold function Td,n follows the following bound:

FAI(Td,n) ≥

{
min(2d, n− d+ 2) if d ≤ n+1

2 ,

min(2(n− d+ 1), d+ 1) if d > n+1
2 .

Remark 2. Note that this bound can be reached, as proven in [TLD16] for the majority functions T2m−1,2m

and T2m−1+1,2m+1 for all integers m ≥ 2.

4.2 Parameters of XOR-THR Functions.

The particular structure of XOR-THR functions make the resiliency and nonlinearity parameters easy to
determine from the ones of these two components.

Lemma 8 (Resiliency of XOR-THR Functions). Let f be the XOR-THR function XORk + Td,n, then:

res(XORk + Td,n) =

{
k if n = 2d− 1,

k − 1 otherwise.

Lemma 9 (Nonlinearity of XOR-THR Functions). Let f be the XOR-THR function XORk + Td,n, then:

NL(XORk + Td,n) =



2n+k−1 − 2k
(

n−1
(n−1)/2

)
if d = n+1

2 ,

2k
n∑

i=d

(
n

i

)
if d > n+1

2 ,

2k
d−1∑
i=0

(
n

i

)
if d < n+1

2 .

Then we focus on the exact algebraic immunity of these functions, a lower bound on the fast algebraic
immunity, and the exact DAN.

Lemma 10 (Algebraic Immunity of XOR Threshold Functions). Let f be the XORk + Td,n function:

AI(XORk + Td,n) =

{
n+1
2 if d = n+1

2 ,

min{k, 1}+min{d, n− d+ 1} otherwise.
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Lemma 11 (Fast Algebraic Immunity of a XOR-THR Function). Let f be the XORk + Td,n function:
if k = 0, then:

FAI(XOR0 + Td,n) ≥ min(2min(d, n− d+ 1), 1 + max(d, n− d+ 1)).

If k > 0

FAI(XORk + Td,n) ≥

{
n+3
2 if d = n+1

2 ,

2 + min(d, n− d+ 1) otherwise.

Lemma 12 (DAN of XOR-THR Functions). Let XORk + Td,n be a XOR-THR function such that k > 0,
n ∈ N, and 1 ≤ d ≤ n, then:

DAN(XORk + Td,n) =



(
n
d

)
if d < n

2 ,(
n+1
d+1

)
if d = n

2 ,(
n
d

)
if d = n+1

2 ,(
n+1
d

)
if d = n

2 + 1,(
n

d−1
)

otherwise.

Furthermore DAN(XORk + Td,n) = DAN(1 + XORk + Td,n).
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MJSC16. Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet. Towards stream ciphers for efficient

FHE with low-noise ciphertexts. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume
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