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Abstract. Leakage detection seeking the evidence of sensitive data de-
pendencies in the side-channel traces instead of trying to recover the
sensitive data directly under the enormous efforts with numerous leak-
age models and state-of-the-art distinguishers can provide a fast pre-
liminary security assessment on the cryptographic devices for designers
and evaluators. Therefore, it is a popular topic in recent side-channel
research of which the Welch’s t-test-based Test Vector Leakage Assess-
ment (TVLA) methodology is the most widely used one. However, the
TVLA is not always the best option under all kinds of conditions (as we
can see in the latter section of this paper). Kolmogorov-Smirnov test is
a well-known nonparametric method for statistical analysis to determine
whether the samples are from the same distribution by analyzing the
cumulative distribution. It has been proposed into side-channel analysis
as a successful distinguisher. This paper proposes—to our knowledge,
for the first time—Kolmogorov-Smirnov test as a new method for leak-
age detection. Besides, we propose two implementations to speed up the
KS leakage detection procedure. Experimental results on simulated leak-
age with various parameters and the practical traces verify that KS is
an effective and robust leakage detection tool and the comprehensive
comparison with TVLA shows that KS-based leakage detection can be
a right-hand supplement to TVLA when performing the side-channel
assessment.

Keywords: Side Channel Analysis, Kolmogorov-Smirnov Test, Leakage
Detection, Cumulative Distribution Function, Histogram

1 Introduction

Side-channel attacks pose a serious threat to the secure devices implementing
cryptographic algorithm since the devastating effectiveness and simplicity of such
attacks began to become apparent with the work of Kocher et al. in the late
1990s [19]. Therefore, the evaluation of the vulnerability of cryptographic devices
against side-channel attacks is an issue of increasing importance for designers



and certification bodies. Leakage detection along this line has been attracting
most attention recently in academia and industry [8,9,23,4,11,24,6]. It has shown
its advantage as a convenient tool to fast conclude whether the device leaks by
simply seeking evidence of sensitive data dependencies in the measured traces
rather than trying to perform the sensitive data recovery attacks with numerous
leakage models and state-of-the-art distinguishers.

The Test Vector Leakage Assessment (TVLA) [16,3] proposed by Cryptog-
raphy Research at the 2011 Non-Invasive Attack Testing workshop is the most
popular option among this trend and it has been well studied [31,10,32,35,36].
TVLA uses Welch’s t-test to determine whether there is leakage by targeting
the difference of expectation between two sets of traces of which one is asso-
ciated with a fixed input and the other is associated with random input. If a
significant difference is found the device is regarded as unsecure. It also can be
extended into higher-order leakage detection by pre-processing the traces first
then test the pre-processed traces [31]. The superiority of TVLA relies on the
simple calculation of the parameters relating to the t-test.

KolmogorovSmirnov (KS) test is a nonparametric test of the equality of
two distributions. In particular, the KolmogorovSmirnov statistic quantifies a
distance between the empirical distribution functions of two samples to draw
conclusion whether the two samples are from one distribution. It was suggested as
an alternative distinguisher for Mutual Information Analysis [15] in [34] for side-
channel community. Since then, several literatures demonstrating the efficiency
of KS distinguisher have been published [37,20,18]. The basic principle of this
distinguisher is that the samples partitioned based on the wrong key candidates
are from the same distribution concluded by KS test and samples partitioned
based on the true key candidate can be concluded from the different distribution
by KS test.

1.1 Contribution

The contribution in this paper is threefold.

First, we confirm that this is the case KS can be used, not just to be a
distinguisher for side-channel attack, but as an efficient information-theory based
leakage detection tool. We demonstrate that the KS test can be used to find the
sensitive data dependencies in the univariate traces and can be easily extended
into multivariate leakage.

Second, we propose fast implementation based on histogram to speed up the
KS leakage detection procedure.

Third, we carry out a series of experiments on both simulated leakage and
real-world traces captured from the cryptographic device to conform the KS’s
efficiency on leakage detection. Besides, we perform a comprehensive comparison
with the well-established TVLA (as a benchmark) by varying the leakage factors
and find that KS test is more stable whilst TVLA suffers the fixed value used
to generate the fixed traces used to generate the fixed traces and the order in
masking scheme.



1.2 Outline

The rest of the paper proceeds as follows. Section 2 covers the preliminaries
of notation used in this paper and the concept of Kolmogorov-Smirnov test.
In Section 3 we describe how to detect leakage for both the univariate and
multivariate settings using Kolmogorov-Smirnov test. Section 4 presents how to
speed up the test procedure. In Section 5 we perform a series of experiments
in the simulated context. Section 6 presents the results of experiments on the
practical traces to verify the effectiveness of our proposed approach. Section 7
concludes the paper.

2 Preliminaries

In this section, we give a brief introduction on the notation and review the
Kolmogorov-Smirnov test we put our focus on more closely in this paper.

2.1 Notations

We consider a ‘standard DPA attack’ scenario as defined in [21], and briefly ex-
plain the underlying idea as well as introduce the necessary terminology here. We
assume that the power consumption P = {P1, ..., PT } of a cryptographic device
(as measured at time points {1, ..., T}) depends, for at least some τ ⊂ {1, ..., T},
on some internal value (or state) fk∗(X) which we call the target : a function

fk∗ : X → Z of some part of the known plaintext—a random variable X
R
∈ X—

which is dependent on some part of the secret key k∗ ∈ K. Consequently, we
have that Pt = Lt ◦ fk∗(X) + εt, t ∈ τ , where Lt : Z → R describes the data-
dependent leakage function at time t and εt comprises the remaining power
consumption which can be modelled as independent random noise (this sim-
plifying assumption is common in the literature—see, again, [21]). The attacker
has N power measurements corresponding to encryptions of N known plaintexts
xi ∈ X , i = 1, . . . , N and wishes to recover the secret key k∗. The attacker can
accurately compute the internal values as they would be under each key hypothe-
sis {fk(xi)}Ni=1, k ∈ K and uses whatever information he possesses about the true
leakage functions Lt to construct a prediction model (or models) Mt : Z →Mt.

2.2 Kolmogorov-Smirnov Test

Kolmogorov-Smirnov (KS) test is a non-parametric hypothesis test of the equal-
ity of continuous or discontinuous one-dimensional probability distributions that
can be used to compare a sample with a reference probability distribution or to
compare two samples. The Kolmogorov-Smirnov statistic quantifies a distance
between the empirical distribution function of the sample and the cumulative
distribution function of the reference distribution Θ. Thus the null hypothesis
of test H0 and the alternative hypothesis Halt are

H0: the samples come from Θ vs. Halt: the samples do not come from Θ



The empirical cumulative distribution function Fn for n independent and
identically distributed (iid) ordered observations Xi is defined as

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi) (1)

where I(−∞,x](Xi) is the indicator function, equal to 1 if Xi ≤ x and equal to 0
otherwise. The Kolmogorov-Smirnov statistic for a given cumulative distribution
function F (x) is

Dn = sup
x
|Fn(x)− F (x)| (2)

where sup
x
| · | is the supremum of the set of distances. If the sample comes from

distribution F (x), then Dn converges to 0 almost surely in the limit when n goes
to infinity. The null hypothesis is not rejected if Dn < Dcrit,n,α where Dcrit,n,α

is the critical value corresponding with a given level α.3

The one-sample Kolmogorov-Smirnov test can be extended for two-sample
comparison to test whether they come from the one distribution. In this case,
the hypothesis of Kolmogorov-Smirnov test is

H0: FA = FB vs. Halt : FA 6= FB

where FA and FB are the two samples. The statistic for the two-sample test is

Dn,m = sup
x
|FA,n(x)− FB,m(x)| (3)

where FA,n and FB,m are the empirical distribution functions of the first and
the second one-dimensional sample respectively. An example of the calculation of
Dn,m is shown in Fig. 1 where the blue line and the red line represent cumulative
probability of the two samples, and the black arrow is the KS statistic Dn,m

which measures the maximum distance of the two cumulative probability. For
large samples, desired probability p value to accept the null hypothesis is

p = 2
∞∑
j=1

(−1)
j−1

e−2j
2Z2

(4)

where Z is defined by

Z = Dn,m(
√
J +

0.11√
J

+ 0.12) (5)

and
J =

nm

n+m
(6)

where n,m are the size of samples.

3 For more details about how to calculate p value for one-sample Kolmogorov-Smirnov
test, see [22].
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Fig. 1. An illustration of two-sample Kolmogorov-Smirnov test

The generalization of the one-dimensional Kolmogorov-Smirnov test to high
dimensional probability distributions is a challenge. Peacock [26] proposed a bi-
variate KS for two two-dimensional samples test that uses four pairs of cumula-
tive probability (instead of only one). For instance, the two-dimensional samples
are A = (A1,A2) = {A1,i, A2,i}ni=1 and B = (B1,B2) = {B1,j , B2,j}mj=1, then
the bivariate KS defined by Peacock is

DA,B = sup
(x,y)∈(A1∪B1,A2∪B2)

|FA1,A2(x, y)− FB1,B2(x, y)| (7)

The distribution-free property of the Kolmogorov-Smirnov test rests on being
able to map any distribution function on to any other distribution function using
a transformation that preserves the ordering of the data. In the one-dimensional
case, the definition of empirical cumulative distribution function Fn(x) is trivial
since there only two ways to order the data which are P (X ≤ x) or P (X > x).
In fact, the two ways to order the one-dimensional data make no difference since
they can be mapped from each other (i.e. P (X ≤ x) = 1− P (X > x)).

However, in the high-dimensional case the directions to order the tuples
(x, y, . . .) are arbitrary and affect the definition of the empirical cumulative dis-
tribution function. For example, there is no way to map P (X ≤ x, Y ≤ y) to
P (X ≤ x, Y > y). For d dimensional data, there are 2d independent ways to de-
fine cumulative distribution function. The four cumulative distribution functions
for two-dimensional case are

FA1,A2(x, y) =
1

n

n∑
i=1

n∑
j=1

IA1,i≤x,A2,j≤y (8)

FA1,A2
(x, y) =

1

n

n∑
i=1

n∑
j=1

IA1,i≤x,A2,j>y (9)

FA1,A2
(x, y) =

1

n

n∑
i=1

n∑
j=1

IA1,i>x,A2,j>y (10)



FA1,A2
(x, y) =

1

n

n∑
i=1

n∑
j=1

IA1,i>x,A2,j≤y (11)

We use symbols F−−A , F−+A , F++
A , F+−

A to represent (8) - (11) for short respec-
tively. With the same manner, the definitions of higher-dimensional cumula-
tive distribution function can be determined (e.g. one of three-dimensional cu-
mulative distribution functions F−−−A can be defined by FA1,A2,A3

(x, y, z) =

1
n

n∑
i=1

n∑
j=1

n∑
k=1

IA1,i≤x,A2,j≤y,A3,k≤z). Then the KS statistic DA,B in (7) is given

by the max difference distance among all types of cumulative distribution func-
tions suggested by Peacock [26].

3 Methodology

Following the description about Kolmogorov-Smirnov test for comparison of two
distributions in Section 2.2, we explain how to use it for leakage detection in this
section.

3.1 General Approach

Suppose that n traces P(i)(i ∈ {1...n}) are captured from the device under test
(DUT) when it is encrypting or decrypting the corresponding data X(i)(i ∈
{1...n}). Each of the n traces has T sample points {P (i)

1 , ..., P
(i)
T } as described

in Section 2.1. Note that the traces capture measurement and procedure are
the same with the TVLA as described in detail in [31]. Then the traces can
be categorized into two groups GA and GB according the intermediate value of
each encryotion with some distinguisher function df . The GA and GB can be
expressed as,

GA = {P(i)|df(Xi) = x}, GB = {P(i)|df(Xi) 6= x}

For instance, the df can be chosen as one bit of the intermediate value then the
value of x in this case is 0 or 1. Then, the Kolmogorov-Smirnov test is performed
on each time point of [1, T ]. More precisely, for a time point t ∈ [1, T ] that can
be regarded as a random variable, its samples FA and FB can be extracted from
GA and GB at the corresponding point of length nA and nB respectively (where
we assume that nA=|GA| and nB=|GB | representing the cardinality of the two
groups). Then the leakage detection task is converted to determine whether these
two samples come from a distribution. If they are from the same distribution
which means it is difficult to recover the sensitive information by analysing these
traces which concludes that the DUT passes the evaluation. The Kolmogorov-
Smirnov test is used to test these two samples. The null hypothesis H0 is set
to be that they are from the same distribution which will conclude the DUT is
secure enough under the given confidence level α while the alternative hypothesis
Halt is set to they are from the different distributions. The criterion to reject



the null hypothesis only if the inequation (4) is fulfilled where the calculation
of D is given by equation (3). Repeat the aforementioned procedure for all the
time point t and conclude that the DUT is not secure when at least one null
hypothesis is rejected.

Such a test that requires the participation of known key and the distinguisher
function is so-called specific test. Since this kind of test will suffer from different
distinguisher functions and the information of the secret key which is contradic-
tory with the black-box evaluation that none information should be known in
advance. To avoid these drawbacks, non-specific (or fixed vs. random) KS test
can be performed for leakage detection. In order to conduct the non-specific KS
test, the two groups GA and GB are derived when the traces collection rather
than by the distinguisher function. First, a fixed data X is selected to be en-
crypted (or decrypted) for nA times and the corresponding traces are captured
to form the group GA. Then, random data are used to feed the DUT for encrypt-
ing (or decrypting) for nB times and then the corresponding traces are captured
to form the group GB . It is noticeable that the procedure of constructing GA or
GB is not a consecutive one. The sequence of processing the fixed data or the
random data should be random-cross (to avoid the irrelevant error caused by
continuous processing of a fixed data—see, again, [31]). Once the GA and GB
have been formed for the non-specific KS test, the Kolmogorov-Smirnov test is
performed for each time point as the specific KS test described before.

3.2 Multivariate Extensions

The above method can work sufficiently in the context that different points in a
trace are treated as independent variables which can be happen in unprotected
implementation of algorithm and the masked implementation on hardware which
implies all the random shares processing concurrently. However, it is appealing to
suppose that taking more than one data point into account might be beneficial as
described in Section 2.1 that for at least some τ ⊂ {1, ..., T} the samples points
depend on some internal value (or state) fk∗(X). Besides, in the case of masked
implementation on software the random shares are manipulated in sequence so
that it is more efficient to detect the joint distributions of two or more trace
points related to shares value.

Suppose the sensitive intermediate values s = Fk∗(x), the principle behind
masking is to split s into d+ 1 shares (r0, ..., rd ∈ Z) satisfying the relation4

s = r0 ⊗ r1 ⊗ ...⊗ rd

where the ⊗ operation is the bitwise addition (or XOR) in the common case
of Boolean masking. One of the shares, e.g. r0, is sometimes referred to as the
‘masked variable’, with the other shares, (r1, ..., rd) then viewed as the ‘masks’.
For the software implementation of masked scheme the leakage of the shares

4 This relation exists implicitly even when it doesn’t manifest directly in the crypto-
graphic algorithm.



corresponding to the sensitive value s is

l = (l0, l1, ..., ld)

where

l0 = L0 ◦ (s⊕ r1 ⊕ . . .⊕ rd) + ε0

li = Li ◦ (ri) + εi, for 1 ≤ i ≤ d.

Note that although it is difficult for the evaluator to precisely determine the
location of li, we assume that ` time point candidates can be discovered for each
share by some advanced methods such as points of interest extraction [29,7,13]
or a priori knowledge about the masked implementation. Thus, the (d+1)` time
points should be analysed which implies that the size of all possible tuples would
be `d+1. Since we focus on the general approach of leakage detection based on
KS test and its efficiency in this paper, we just consider only one of the `d+1

tuples.
For the non-specific test, the group GA and GB consist of the d-dimensional

traces corresponding with the fixed input data and the random data respectively.
And for the specific test, all the d-dimensional traces captured from the DUT
with the random input are categorised to GA and GB by applying the distin-
guisher function on the sensitive value s based on the concept of the original
differential power analysis [19].

Multivariate Test Kolmogorov-Smirnov test can be directly applied to test
whether these multivariate samples (l0, l1, ..., ld) of GA and GB come from the
same distribution according to equation (7) - (11) (recall Section 2.2). The calcu-
lation of the test statistic DA,B is a bit more complex here than in the univariate
scenario since all the 2d possible cases need to be taken into account. The final
statistic is given by the max value of these DA,Bs.

Pre-processing The other option to deal with the multivariate leakage detec-
tion is to transform the multivariate samples into one-dimensional data first as
the TVLA does [16,31] and then apply the univariate Kolmogorov-Smirnov test
on the pre-processed one- dimensional data. The most popular transformation
method (aka combined function) is probably the normalised product, shown in
[28,33] to be the optimal choice in the idealised setting of a correlation attack
[5] against Hamming weight leakage with Gaussian noise, which is defined as

l∗ =

d∏
t=0

(lt − µt) (12)

where l∗ is the pre-processed data and µt denotes the mean of the samples at
time point t. The GA and GB are pre-processed separately with (12) such that
two univariate sample with size of nA and nB can be computed and univariate
Kolmogorov-Smirnov test can be conducted.



4 Fast Implementation

In this section, we investigate how to implement the aforementioned methodol-
ogy fast in practical evaluation. Since the evaluation might involve millions of
traces, it is important to design an efficient algorithm to complete the process.
Besides, since the statistic value is influenced by the number of traces design-
ing an incremental algorithm can benefit the evaluation process. Inspired by the
ideas to solve the fast TVLA problem [30] and the key rank estimation aspect
in side-channel analysis [17,27], we introduce the histogram method to deal with
the acceleration of the Kolmogorov-Smirnov test based leakage detection issue.

Assume that the evaluator captures n side-channel leakage traces each of

which contains T points {P (i)
1 , ..., P

(i)
T } (i ∈ [1, n]). The values of sample points

are integral numbers and range from 0 to 2Q−1 since they are captured by
oscilloscope (with number of quantization bits of Q). The fast implementation of
Kolmogorov-Smirnov test-based leakage detection is divided into two categories
implementation without pre-processing and implementation with pre-processing.

4.1 Implementation without Pre-processing

Suppose the multivariate test which is suitable for the software masking scheme
and the situation exploiting joint leakage of multiple points in unprotected im-
plementation be the bivariate test (other higher-dimensional test can be done
in the same manner proposed in this section). In that case, two sample points
of traces are used to conduct the leakage detection. The equation (7) can be
rewritten by the following two equations

ϕ(x, y) = FA1,A2(x, y)− FB1,B2(x, y) (13)

DA,B = max|ϕ(x, y)|,∀(x, y) ∈ (A1 ∪B1,A2 ∪B2) (14)

The function F (x, y) is defined as counting the number of samples that satisfy
the conditions according to (7) - (11). In addition, we assume that the cardinality
of group GA and GB are the same during the detection process. This constraint
can be easily satisfied because the criterion used to category the whole traces
is based on the random number (for non-specific test) or random intermediate
value of cryptographic algorithm (for specific test). Therefore, the definition of
ϕ(x, y) in (13) becomes the mean of difference of the accumulative counts rather
than the difference of mean accumulative counts. Consider the F+− (equation
(11)) scenario for instance, ϕ(x, y) can be rewritten as

ϕ(x, y) = FA1,A2
(x, y)− FB1,B2

(x, y)

=
1

nA

nA∑
i=1

nA∑
j=1

IA1,i≤x,A2,j>y −
1

nB

nB∑
i=1

nB∑
j=1

IB1,i≤x,B2,j>y

=
1

n
(

n∑
i=1

n∑
j=1

IA1,i≤x,A2,j>y −
n∑
i=1

n∑
j=1

IB1,i≤x,B2,j>y)

=
1

n
φ(x, y)

(15)



where

φ(x, y) =

n∑
i=1

n∑
j=1

IA1,i≤x,A2,j>y −
n∑
i=1

n∑
j=1

IB1,i≤x,B2,j>y (16)

Hence, the problem is converted into compute the φ(x, y) function.
When a new observation o = (o1, o2) ∈ GA ∪ GB is inserted into the set, if

o ∈ GA for all x > o1 and at the same time y ≤ o2, φ(x, y) is increased by 1.
Otherwise, for all x > o1 and at the same time y ≤ o2, φ(x, y) is decreased by
1. The φ(x, y) for the rest of x′s and y′s are kept unchanged. In that way, all
the φ(x, y) can be computed iteratively then the statistic value of KS can be
computed as shown in Algorithm 1 which can be extended into univariate and
higher-variate test logically in the same manner. Since the sample points x and
y captured from oscilloscope are finite numbers ranging from 0 to 2Q−1, such
that the total computational complexity is O(n∗2Q∗d) for the d-dimensional KS
leakage detection5. It is comparable to the proposal based on brute force strategy
suggested by Peacock [26], though optimized by Fasano and Franceschini [14]
evaluating every (x, y) ∈ (A1,A2) ∪ (B1,B2) rather than every (x, y) ∈ (A1 ∪
B1)× (A2 ∪B2), where O(nd+1) is required.

Algorithm 1: Implementation without pre-processing

Input : n 2-dimensional traces (P
(i)
1 , P

(i)
2 ), label vector xi ∈ {0, 1}

(i = 1, ..., n)
Output: DA,B

1 for i=1 to 2Q do
2 for j=1 to 2Q do
3 φ(i, j)←0; // initialization

4 end

5 end
6 for i=1 to n do

7 for j=P
(i)
1 to 2Q do

8 for k=1 to P
(i)
2 do

9 φ(j, k)←φ(j, k)+1-2∗xi; // recall (16)

10 end

11 end

12 end
13 DA,B←2∗max(|φ(i, j)|)/n
14 return DA,B

4.2 Implementation with Pre-processing

The algorithm presented for the leakage detection without pre-processing takes
advantage of the integral and finite numbers which can be used as the subscripts

5 Q=8 for a typical oscilloscope.



of matrix in the algorithm. However, when dealing with the pre-processed traces
such as (12) does, some or all elements of the consequential univariate trace
are decimal numbers rather than integral numbers. In that case, Algorithm 1 is
unable to be applied directly. Although the sample points in the traces are no
longer integral numbers, the lower and upper bound of these sample points are
limited. For example, in the bivariate setting l0 in (12) ranges from 0 to 255 such
that the mean value of this variable µ0 also lays in the range of (0,255). Hence,
l0 − µ0 ∈ [−µ0, 255 − µ0]). The second variable has the same property so that
(l0 − µ0)(l1 − µ1) ∈ (−2562, 2562). Note that the lower bound and upper bound
in the practical evaluation are much tighter than the theoretical result because
the values of the samples at one time point are centralized in a much smaller
range than [0,255].

The fast implementation of KS-based leakage detection on the traces with
pre-processing is divided into two stages. The first stage is to pre-process the
multivariate traces which can be implemented easily by computing the mean
value of each variable and then calculating the normalised product in compu-
tational complexity of O(n). Repeat that for the two groups GA and GB the
univariate pre-processed traces can be computed. The second stage is to apply
the univariate KS test on the two pre-processed traces. As explained before, the
value of the samples in the traces are bounded thus the new histogram (with
Nbin equally sized bins) can be applied to count the number of each sample
value approximatively. Comparing the histograms belonging to the two groups
can result in the computation of the statistic value Dn,n in (3) (again, we as-
sume that the cardinalities of GA and GB are the same). Algorithm 2 shows the
detailed procedure of the second stages with the computational complexity of
O(n ∗Nbin).

We now give the basic intention behind Algorithm 2. The first step is to
determine the bounds of the samples (tighter than (−2562, 2562)) which are then
used to calculate the binsize of the histogram. When the current observation l∗

comes from group GA, the counting number of those samples value larger than
l∗ should be increased by 1 according to (3) which leads to the histogram with
larger subscripts than l∗’s subscript round((l∗ − LowerBound)/Sbin)+1 where
the function round(·) represents the nearest integer.

4.3 Bounding the Error

Assume that the samples of two random variables X and Y are {x1, ..., xn} and
{y1, ..., yn}. For the KS test, the goal is to calculate the max distance of the
cumulative distribution function. When the histogram proposed in 4.2 is applied
the xi and yi are located in different places determined by the central value of
histogram bins and the binsize. Thus, the overall max distance would not be
exactly the same with the original one which can be explained by the following
example.

Example 1. LetX be {0, 2.8, 1.3, 2.5, 1.8, 3.0, 2.7, 0.8, 0.4, 2.3} and Y be {0.1, 1.4,
2.3, 0.3, 2.0, 1.9, 2.4, 1.5, 1.8, 0.7}, the max difference of cumulative distribution



Algorithm 2: Implementation with pre-processing

Input : n univariate pre-processed traces {l∗(i)A } for group GA, n univariate

pre-processed traces {l∗(i)B } for group GB (i = 1, ..., n), Nbin

Output: Dn,n

1 UpperBound=max(max({l∗(i)A }),max({l∗(i)B })),(i = 1, ..., n)

2 LowerBound=min(min({l∗(i)A }),min({l∗(i)B })),(i = 1, ..., n)
3 Sbin ← (UpperBound− LowerBound)/Nbin; // set binsize

4 for i=1 to Nbin do
5 φ(i)←0; // initialization

6 end
7 for i=1 to n do

8 IDA←round((l
∗(i)
A − LowerBound)/Sbin) + 1

9 IDB←round((l
∗(i)
B − LowerBound)/Sbin) + 1; // set subscript

10 if IDA ≤ IDB then
11 for j=IDA to IDB do
12 φ(i)←φ(i) + 1
13 end

14 else
15 for j=IDB to IDA do
16 φ(i)←φ(i)− 1
17 end

18 end

19 end
20 Dn,n←max(|φ(i)|)/n
21 return Dn,n



function is 0.4 at P(y ≤ 2.4)−P(x ≤ 2.4). When the bins number Nbin is set
to be 3 which leads binsize Sbin to be 1. In this case, the histograms of X and
Y are HX = {3, 2, 5} and HY = {3, 4, 3} which means the max distance of
cumulative distribution function is 0.2. However, for Nbin = 5 which leads to
Sbin = 0.6 and the histograms are HX = {2, 1, 2, 1, 4} and HY = {2, 1, 2, 4, 1},
the corresponding max distance is 0.3 that is closer to the true value.

The error between the proposed histogram method and the original ‘bruteforce’
method for the KS test can be bounded through some theoretical analysis. Sup-
pose the probability density functions (PDF) of random variables X and Y are
α(x) and β(y) and assume that they are smooth (i.e. the derivative α′(x) and
β′(y) are bounded for all x and y). Again, let {x1, ..., xn} and {y1, ..., yn} be the
samples of variables X and Y .

Proposition 1 The mean error e between histogram method and the original
‘brute force’ method can be bounded by |e| < 2B ∗ Sbin ∗ L, where B is the
boundary of the derivative of PDF satisfying |α′(x)| < B and |β′(x)| < B, Sbin
is the binsize of histogram, L is the distance between smallest value and largest
value among the samples.

Proof. When the binsize is set to be Sbin, the samples are categorized into Nbin
groups:

C1 = [0, Sbin), C2 = [Sbin, 2Sbin), ...CN = [(N − 1)Sbin, NSbin)

Let α̂(x) be the PDF estimator of Ci.

E(α̂(x)) =
1

Sbin
P (x ∈ Ci)

=
1

Sbin

∫ iSbin

(i−1)Sbin

α(x)dx

=
F (iSbin)− F ((i− 1)Sbin)

Sbin
= α(t), (t ∈ ((i− 1)Sbin, iSbin))

(17)

The last equality is satisfied because of the Lagrange Mean Value Theorem. The
error e′ between PDF is

e′ = |E(α̂(x))− α(x)|
= α(t)− α(x)

= |α′(s)(t− x)|, (again, s ∈ (t, x))

< B ∗ Sbin

(18)

The cumulative density function is defined as the integral of PDF, hence the
error between these two kinds of CDF is denoted as:

|
∫ u

−∞
E(α̂(x))dx−

∫ u

−∞
α(x)dx| = |

∫ u

−∞
(E(α̂(x))− α(x))dx|

< u ∗B ∗ Sbin
< L ∗B ∗ Sbin

(19)



The second last inequation is done because the whole integral can be calculated
within each of the Sbin size region. With the same procedure, the error of CDF
on variable Y still can be bounded

|
∫ u

−∞
E(β̂(y))dy −

∫ u

−∞
β(y)dy| < L ∗B ∗ Sbin (20)

Therefore, the error e between the KS statistic that measures the largest differ-
ence of two CDF can be determined through (19) and (20),

||
∫ u

−∞
E(α̂(x))dx−

∫ u

−∞
E(β̂(x))dx|−|

∫ u

−∞
α(x)dx−

∫ u

−∞
β(x)dx|| < 2L∗B∗Sbin

ut

5 Simulated Experiments

We here present the outcomes of several experiments on simulated leakages both
in unprotected and masking contexts. As a baseline against which to compare
the leakage detection performance of KS, we also tested the TVLA proposal.
Our chosen evaluation metric is the mean p-values (among 200 trials for each
experiment) to accept the null hypothesis which is concluding there is not a leak.

5.1 Unprotected Univariate Leakage

We first explore the performance of KS detection on the leakage of unprotected
implementation. To do this, we simulate traces by adding Gaussian noise εG to
the Hamming weight of intermediate value (recall Section 2.1).

l = HW (s) + εG

where HW (·) represents the hamming weight. The magnitude of noise is set to
be 2

SNR . Two groups of simulated traces GA and GB are generated where the
traces in GA correspond with the fixed intermediate value s and the traces in
GB correspond with the random intermediate values.

For the purpose of comprehensive comparison, we investigate the perfor-
mance of the KS leakage detection under different realizations of these parame-
ters in unprotected univariate leakage:

– The fixed value for simulating the fixed leakage.
– The magnitude of noise.

Influence of noise First, we consider the influence of the noise. Since the noise
is the parameter under test here, we fix the Hamming weight of fixed value to 3.
We change the variance of noise and let the SNR be 2, 2−1, 2−3, 2−5. Figure 2
shows the p-value results of KS based leakage detection and t-test based TVLA
while SNR varies. We first observe that the TVLA outperforms KS leakage
detection when SNR decreases.
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Fig. 2. Results of KS-based leakage detection and TVLA against unprotected leakage
as SNR varies (Hamming weight: 3).

Influence of fixed value We then test the influence of fixed value. Since
the fixed value is the parameter under test here, we fix the SNR to 2−3. We
change the hamming weight of the fixed value that is used to generate the fixed
traces to be 2, 3, 4, and 5. The results are shown in Figure 3. We find that
KS-based leakage detection can work stably for all hamming weights while the
TVLA’s performance falls a lot at hamming weight of 4. The main reason is
that the TVLA takes the mean value of samples as the critical criterion to
determine whether the two samples are from same distribution. Since the mean
value of the informative-part samples from random traces will converge to 4
when number of traces increases through central limit theorem, the samples
from random set and the samples from fixed set with fixed hamming weight 4
can not be distinguished by TVLA. However, KS as an information-theory tool
measuring the characteristic of the CDF would not be influenced by the fixed
value.

5.2 Masked Univariate Leakage

In this section, we consider the masking scheme that is for hardware imple-
mentation where the masks are manipulated in parallel. For the evaluation of
the KS detection performance on the masked leakage (both in univariate and
multivariate context in the later subsection), one more parameter is considered:

– The order of mask.

In order to simulate the univariate higher-order masking leakage, we use the
following formula.

l =

d∑
i=0

HW (ri) + εG (21)
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Fig. 3. Results of KS-based leakage detection and TVLA against unprotected leakage
as hamming weight of fixed value varies (SNR: 2−3).

where ri (i = 1, ..., d) represents the d random masks uniformly distributed in [0,

255], r0 is referred as the ‘masked variable’ satisfying r0 =
d
⊕
i=1

ri⊕s. Note that the

SNR here is slightly different with the unprotected simulation since the ‘signal’
consists of d + 1 valuable information. Ignore the difference introduced by the
calculation of r0 (we suppose the d+ 1 variables are independent), the variance
of signal can be given by 2(d + 1) approximately (relevant explanation can be
found in Appendix A). Hence the variance of noise in this part is determined by
2(d+1)
SNR . The pre-processing approach for the masked univariate leakage is:

l∗ = (l − µl)d (22)

where µl is the mean of the sample.

Influence of noise We first investigate the influence of noise on the perfor-
mance of leakage detection in the masked univariate setting. As is done in the
unprotected scenario, we fix the hamming weight of fixed value to 0, the order of
mask to 3, an allow the SNR to be {4, 1, 2−1, 2−2}. Figure 4 shows the experi-
mentally observed performance of these two leakage detection tools given differ-
ent numbers of traces. The results indicate that KS can be a leakage detection
tool in masked leakage setting. Like the results in the unprotected scenario, the
TVLA still outperforms KS-based leakage detection since the hamming weight
is 0.

Influence of fixed value As before, we investigate the influence of fixed value
on the performance of leakage detection in the masked univariate setting. The
SNR is set to 4 and the order is set to 2. The experimental result is indicated in
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Fig. 4. Results of KS-based leakage detection and TVLA against masked univariate
leakage as SNR varies (Hamming weight: 0, order of mask: 3).

Figure 5. The KS-based leakage detection works always more stably than TVLA
when hamming weight of fixed value varies. Besides, when the hamming weight
of fixed value is 4 KS-based leakage detection significantly outperforms TVLA.

0 2000 4000 6000 8000

Number of samples

0

10

20

30

40

50

60

70

-l
o

g
1

0
(p

)

Hamming weight: 0

KS-based leakage detection

TVLA

0 0.5 1 1.5 2

Number of samples 104

0

1

2

3

4

5

6

7

-l
o

g
1

0
(p

)

Hamming weight: 4

KS-based leakage detection

TVLA

Fig. 5. Results of KS-based leakage detection and TVLA against masked univariate
leakage as hamming weight of fixed value varies (Order of mask: 2, SNR: 4).

Influence of order Different with the unprotected scenario, we test a more
parameter order of masks d on the performance of the leakage detection tools
for the masked scenario. We fix the hamming weight to 0 (in consideration that
TVLA might not work well in other settings), SNR to 16, and allow the d to
vary in range of {3, 4, 6, 7}. The results are presented in Figure 6. When the
order of masks increases, the advantage of KS-based leakage detection becomes
more significant when compared with TVLA.
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Fig. 6. Results of KS-based leakage detection and TVLA against masked univariate
leakage as order of mask varies (Fixed value is 0, SNR is 16.)

6 Practical Experiments

We now move to consider the performance of the KS-based leakage detection
in the practical setting. The targeted device is an AVR ATmega328P microcon-
troller with a clock frequency of 16MHz to execute uploaded programs. For the
unprotected AES implementation, the encryption program is assembled using
the library AESLib designed by Davy Landman for Arduino-specific port[1].
For the protected AES implementation, we changed the code ‘AES-256 RSM’
downloaded from the DPA contest v4 [2] which is designed for Atmel ATMega-
163 smart-card to adapt for our microcontroller. The mask scheme implemented
is the Rotating S-boxes Masking (RSM; for details, see [25]).The digital oscillo-
scope used to capture the current flow curve during encryption is 8-bit precision
Lecroy waverunner 8104 at a sampling rate of 100MS/s.

6.1 Unprotected Scenario

We capture 400 thousand traces for each of fixed and random set respectively.
The experiments is repeated for 200 times for each given number of traces. The
results are shown in Figure 7. It can be learned from Figure 7 that the KS can
still be a stable tool for leakage detection in practice and slightly outperforms
TVLA when the number of traces increases.

6.2 Masked Scenario

For masked scenario we capture 500 thousand traces for each of fixed and random
set respectively. The RSM scheme involves random masks and random offsets.
We focus only on the two-dimensional leakage detection. It is a characteristic of
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Fig. 7. Results of KS-based leakage detection and TVLA against unprotected traces
in practical setting.

the RSM scheme that the output of the masked S-box and the masked value of
next sub-plaintext have the same mask, so that their XOR result can remove
the mask. In detail, the first part is MSbox(xi ⊕ k ⊕ ri+offset), and the second
part is xi+1⊕ ri+1+offset where MSbox is the masked sbox, i is the index of the
sub-plaintext, offset is a random number, and r is a mask table. According to
the description of the RSM algorithm, the first part can be expressed as

MSbox(xi ⊕ k ⊕ ri+offset) = Sbox(xi ⊕ k)⊕ ri+1+offset

Hence, the XOR result of the two parts is Sbox(xi ⊕ k)⊕ xi+1 which, although
slightly different to the intermediates targeted in the simulated leakage scenario,
can be computed for leakage detection. We don’t promote this combination of
intermediate values are the optimal choice, we simply make use of it as a target
to demonstrate the performance of our proposed KS-based leakage detection.
Unlike the univariate setting, the efficiency of multivariate KS is also tested
here.

The results including performance of KS with normalised product, multivari-
ate KS and TVLA are indicated in Figure 8. From Figure 8 it can be observed
that the two kinds of KS-based leakage detection outperform TVLA in two set-
ting of hamming weight of fixed value. The multivariate KS taking advantage
of the original multivariate distribution of samples shows a distinct superiority
when compared with the pre-processing-based KS leakage detection.

7 Conclusion and Future Perspectives

In this paper, we took the logical next step of extending Kolmogorov-Smirnov
test which is a well-known nonparametric method for statistical analysis and
has been widely studied in side-channel distinguisher application to the recently
emerged leakage detection domain. In consideration of the side-channel leak-
age situation, we proposed two test methods both with fast implementations
to significantly reduce the computation resource for performing practical leak-
age detection. We performed a range of experiments both on simulated leakage
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Fig. 8. Results of KS-based leakage detection and TVLA against masked traces in
practical setting.

with various parameters and practical traces to verify its efficiency. Although the
comprehensive comparison with TVLA reveals that KS-based leakage detection
might not be the optimal under all conditions, its performance is strongly robust
when the parameters vary especially in some cases where TVLA fails to detect
leakage due to the self-characteristic of information-theory. On the other hand,
the empirical results show that KS-based leakage detection would seem to be a
right-hand supplement to TVLA for practitioners.

Since some recent literatures have proposed some ideas for how to speed up
the KS test for statistical analysis[12,38]. Applications of these schemes for the
multivariate KS test and the online KS leakage detection can be avenues for
future work.

Besides, a unified framework of how to fairly and more comprehensively com-
pare and evaluate the leakage detection methods would be an interesting topic
along this line in the future work as per [35].
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A Sum of binomial distributions

Suppose that the two independent random integer numbers are x0 and x1 from
[0, 255] with equal probability which can be expressed as x0 ∼ U(0, 255) and
x1 ∼ U(0, 255). Therefore, the Hamming weight of x0 HW (x0) and x1 HW (x1)
are from binomial distribution B(8, 12 ). The sum Z of these two random variables
are still from binomial distribution. Assume X0 = HW (x0), X1 = HW (x1) and
Z = X0 +X1.

P (X0 +X1 = k) =

k∑
i=0

P (X0 = i,X1 = k − i)

=

k∑
i=0

P (X0 = i)P (X1 = k − i)

=

k∑
i=0

(
8

i

)
(
1

2
)
8( 8

k − i

)
(
1

2
)
8

= (
1

2
)
16 k∑

i=0

(
8

i

)(
8

k − i

)
=

(
16

k

)
(
1

2
)
16

Thus, z ∼ B(16, 12 ), and so is the sum of more random variables of such kind.
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