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Abstract

Blockchain, which realizes state machine replication (SMR), is a fundamental building
block of decentralized systems, such as cryptocurrencies and smart contracts. These
systems require a consensus protocol in their global-scale, public, and trustless networks.
In such an environment, consensus protocols require high resiliency, which is the ability
to tolerate a fraction of faulty replicas, and thus synchronous protocols have been gaining
significant research attention recently. Abraham et al. proposed a simple and practical
synchronous SMR protocol called Sync Hotstuff (to be presented in IEEE S&P 2020).
Sync Hotstuff achieves 2∆ latency, which is near optimal in a synchronous protocol, and
its throughput without lock-step execution is comparable to that of partially synchronous
protocols. Sync Hotstuff was presented under a standard synchronous model as well as
under a weaker, but more realistic, model called mobile sluggish model. Sync Hotstuff also
adopts an optimistic responsive mode, in which the latency is independent of ∆. However,
Sync Hotstuff has a critical security vulnerability with which an adversary can conduct
double spending or denial-of-service attack. In this paper, we present an attack we call
force-locking attack on Sync Hotstuff. This attack violates the safety, i.e., consistency
of agreements, of the protocol under the standard synchronous model and the liveness,
i.e., progress of agreements, of all versions of the protocol, including the mobile sluggish
model and responsive mode. The force-locking attack is not only a specific attack on
Sync Hotstuff but also on some general blockchain protocols. After describing the attack,
we will present some refinements to prevent this attack. Our refinements remove the
security vulnerability on Sync Hotstuff without any performance compromises. We will
also provide formal proofs of the security for each model.

1 Introduction

1.1 Synchronous State Machine Replication

Blockchain is a scheme of state machine replication (SMR) [17, 18]. For the past three
decades, many SMR protocols have been developed and deployed on small- and medium-
sized networks, such as server or database replication in a data center. In such applications,
performance, i.e., high throughput and short latency, is prioritized over resiliency, i.e., ability
to tolerate a fraction of faulty replicas. In such use cases, synchronous protocols are not con-
sidered as a practical solution because of the following problems. First, classical synchronous
protocols are slow because they need large number of rounds, which depend on the known
upper bound of the network delay ∆, to achieve finality, i.e., agreement on a history of a state
machine. Moreover, synchronous protocols need lock-step execution where all replicas start
and end at the same time, and thus the latency is dependent on the number of synchronous
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rounds. Second, the standard synchronous model, which ensures network synchrony for all
honest replicas that faithfully follow protocol instructions, is unrealistic in practice because
small network partitions may occur frequently. Finally, in practice, the synchronous param-
eter ∆ is overestimated to ensure sufficient security but consequently making the protocol
much slower. For these reasons, partially synchronous protocols [4, 8, 12, 11] are much fa-
vored because they can tolerate network partitions to ensure the safety, i.e., consistency of
agreements, of a network. Moreover, partially synchronous protocols do not rely on network
synchrony to finalize, and therefore they can achieve responsiveness, i.e., the latency is depen-
dent on actual bound δ and not on known bound ∆. Although some synchronous protocols
can tolerate the presence of minority faulty replicas (hereafter we assume byzantine fault),
partially synchronous protocols can only tolerate up to 1/3 of faulty replicas, which is not
enough to be favored.

The creation of blockchain technology in 2008 [13, 16, 9] and its applications to decen-
tralized systems, such as cryptocurrencies and smart contracts [20, 7, 6], has made the SMR
protocol to be considered not only for replication in local networks but also in global-scale,
public, and trustless networks. Such public networks require higher resiliency than local pri-
vate networks because of the presence of more malicious activities, as evident in the significant
number of cyber attacks that are conducted across the Internet on a daily basis. Therefore,
many researchers have tried to address the problems described above and develop practical
synchronous protocols. To solve long latency problem, Thunderella [19] introduced the new
notion of optimistic responsiveness, under which finality is independent of ∆ in the optimistic
situation that can occur under protocol assumptions. The strong standard synchronous model
is not practical in real-world applications, and thus many researchers have tried to rethink
and improvise the synchronous model. Guo et al. [10] introduced a new model called weak
synchrony. In this model, not malicious but offline replicas, i.e., they cannot satisfy the syn-
chrony assumption because of some network failure, are treated as honest replicas and the
set of offline replicas can change over time. Such consideration is important in a long-term
deployment of a network, such as a public blockchain where a replica can join, leave, or stay
dormant at any given time.

Abraham et al. presented a synchronous protocol called Sync Hotstuff. It has a sim-
ple design and avoids the problems described above by using several elegant but natural
techniques. First, it uses the synchronous parameter ∆ only for checking the absence of
equivocation, i.e., conflicting block proposals, and thus minimizing reliance on the synchrony.
With this technique, Sync Hotstuff achieves a latency of 2∆, which is near optimal in the
synchronous model. They argued that 2∆ may be the optimal latency because a round trip
may be necessary to check the response of a network. Moreover, Sync Hotstuff does not use
lock-step execution, and thus it achieves a throughput that is comparable to that of partially
synchronous protocols. To consider a more realistic synchronous model, they also applied
the weakly synchronous model but they called it mobile sluggish model. This model ensures
the safety of a sluggish replica, i.e., an offline or slow replica, by collecting enough messages
to check the finality of a prompt replica, i.e., a replica that respects the synchrony assump-
tion. Furthermore, it achieves optimistic responsiveness by checking the agreement on the
optimistic situation with synchronous mode to switch the responsive mode.
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1.2 Block-Chaining and Locking

The main features of a blockchain scheme include blocking, i.e., batching of commands, and
chaining, i.e., construction of a chain by hash references. These features translate SMR into
a simple problem of selecting one path or chain from a growing tree and enable the resolution
of a conflict with descendant/ascendant relation. The finality of a block finalizes all of the
ascendants, and thus even if some replicas did not finalize a block that others did at a given
time, they simply need to finalize a descendant of that block in the future. This simple
and versatile feature of a blockchain makes blockchain widely used as a framework for SMR
protocols today.

In most voting-based blockchain protocols, a middle state of a block is used to reach a
final state. The middle state ensures that a block is voted for by a quorum of replicas, e.g.,
a majority or more than 2/3 of replicas– this is called certified in Sync Hotstuff, justified
in Casper FFG [3], notarized in PiLi [5], and prepared in Hotstuff [21]; hereafter we call it
certified following Sync Hotstuff. In addition, these protocols compare the freshness of a
block based on, for example, view number, block height, or epoch number. A certified block
is finalized when it is assured that any fresher block conflicting with it will not be certified,
i.e., it cannot collect a quorum of votes, by the rule of where to vote defined in the protocol
and therefore will not be finalized, providing safety to the network. The rule of where to vote
is sometimes called the fork choice rule, which provides not only safety but also liveness. In
some protocols, the fork choice is always in a subtree which has a root block as long as a
root change event does not happen. We say that a replica is locked on the root block, and
call the root change event unlocking. In some protocols, a replica is locked on the freshest
certified block. This is natural because the finality rule is constructed such that a finalized
block includes all certified blocks that are fresher in its ascendant. The locking scheme is an
important building block of the fork choice rule, and thus it should be constructed carefully
because it is directly related to the security of the protocol.

1.3 Our Contribution

1.3.1 Force-Locking Attack

In this paper, we present the force-locking attack on Sync Hotstuff. This attack violates the
safety of the protocol under the standard synchronous model (hereafter denoted by Πstd) and
the liveness of all versions of the protocol, including the mobile sluggish model (hereafter
denoted by Πslg) and with responsive mode (hereafter denoted by Πrsp). This attack is not
specific on Sync Hotstuff but is a general form of attack scheme that can be applied to any
locking-based protocol, wherein a locking point is determined by a replica’s past messages.
Thus, the messages sent by faulty replicas controlled by an adversary also affect the choice
of honest replicas. When a block is lockable, i.e., past messages sent by honest replicas make
it ready for messages adoptively created by faulty replicas to change the lock, the adversary
can change the lock whenever it wants. Moreover, replicas may sometimes receive different
messages due to the network delay. To make matters worse, the network may be controlled
fully by the adversary, except for the delay bound in the synchronous model. With a biased
network delay and the messages sent by faulty replicas, an adversary can control the observed
messages and change and split the locking point of some honest replicas. Consequently, a
protocol that relies on the locking rule and without any protection from the force-locking
attack can have its safety and liveness violated. In practice, the bouncing attack on Casper
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FFG, which is the core consensus protocol for Ethereum 2.0, is a variant of the force-locking
attack scheme [2, 14, 15]. This attack simply changes the lock before some block is finalized
by releasing the messages of faulty replicas to lock a lockable block that conflicts the block
that was expected to be finalized. This attack can be repeated indefinitely to violate the
liveness of a network. On the other hand, Sync Hotstuff relies on the locking rule for both
its safety and liveness and has no protection against force-locking. In Sync Hotstuff, a block
proposer called a leader is selected, and the reign of the leader is called a view. The process
in the reign is called steady state protocol, and the process to change the leader is called
view-change protocol. A locking point is a freshest certified block. In Πstd, a block is finalized
when the maximum round-trip time of 2∆ has passed and no equivocation is observed within
that time frame. The authors of Sync Hotstuff ensured that all honest replicas vote for the
same block when there is no equivocation. However, this case will not happen when honest
replicas are locked on different blocks, and therefore cannot vote for the same block. In
this case, a block is finalized in some replicas but not certified, and safety is violated by the
extension of a conflicting certified block. In all versions of the protocol (i.e., Πstd, Πslg, and
Πrsp), a replica is always locked on a freshest certified block. However, in the presence of
force-locking, honest replicas and also an honest leader can be locked on different blocks. In
this case, an honest leader’s proposal cannot be voted for by some honest replicas and cannot
be finalized, therefore violating the liveness.

1.3.2 Refinements and Proofs

We also present some refinements to the protocols of Sync Hotstuff to prevent our proposed
force-locking attack. For the liveness, to ensure that an honest proposal will be voted for by
all honest replicas, we modified the view-change protocol such that if the leader is honest,
then all the proposals in its view are consistent and any inconsistency can only come from
another view. Intuitively, we added a rule to submit its lock in the view-change and add a
waiting time for the next leader to collect all the locks from honest replicas. We also added
a refinement to the locking rule as follows: for the first block after view-change, a replica
is locked on its submission in the view-change. Since an honest leader can collect all the
locks from honest replicas and propose according to them, honest replicas can vote for the
proposal of the honest leader. For the safety, the refinement described above is insufficient
when a faulty leader makes a proposal that ignores the submissions of honest replicas. The
absence of equivocation cannot ensure the existence of a certificate (i.e., a quorum of votes).
To address this problem, we added the rule to check for the existence of a certificate before
the round-trip waiting time to ensure the absence of equivocation. Besides ensuring the
absence of equivocation, this refinement additionally guarantees the existence of certificate in
all honest replicas, and therefore ensuring safety. Note that because the synchronous waiting
time in the steady state protocol is not changed and it does not have lock-step execution,
these refinements do not compromise the protocol’s performance. Finally, we will give formal
proofs of security for each version of the protocol.

1.4 Paper Organization

In Section 2, we briefly review Sync Hotstuff, including some definitions and conventions. In
Section 3, we describe the force-locking attack in detail with specific attack scenarios. In
Section 4, we propose some refinements to Sync Hotstuff and formally prove the safety and
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liveness of the refined protocols. In Section 5, we provide the conclusion and future direction.

2 Sync Hotstuff

In this section, we briefly review Sync Hotstuff, including some basic definitions and conven-
tions which are also used in other blockchain-based SMR protocols.

2.1 State Machine Replication

A state machine replication protocol (SMR) is used for building a fault-tolerant service that
processes client requests. The service consists of n replicas, up to f of which can be faulty.
The threshold parameter f is also called fault threshold or resiliency. All honest replicas
consistently commit client requests into a linearizable log. An SMR protocol is expected to
provide at least the following two security properties: (i) safety: if an honest replica commits
a value in its log position, any other honest replica commits the same value at the same
position, and (ii) liveness: each client request is eventually committed by all honest replicas.
Sync Hotstuff assumes n = 2f + 1, i.e., minority fault.

2.2 Network model

The network consists of pairwise, authenticated communication channels between replicas.
We assume the use of digital signatures and a public-key infrastructure (PKI) and use ⟨x⟩p
to denote a message x signed by replica p, but we omit the signer p when the context is clear.

For the synchrony assumption, the standard synchronous model is first introduced. It
simply states that a message sent at time t by any replica arrives at another replica by time
t+∆. Later in the paper, we assume that the network is controlled by an adversary that can
reorder or delay messages but the adversary can only control the network under synchronous
compliance, and thus the protocol does not deviate from the synchrony assumption. A weaker
model called mobile sluggish model was first introduced by Guo et al. [10] as weak synchrony.
In this model, a sluggish replica, i.e., a replica that does not respect the synchrony assumption,
is still treated as honest. On the other hand, a replica that respects the synchrony assumption
is called a prompt replica. Furthermore, the set of sluggish replicas can change arbitrarily at
any time under the constraint that f = d+ b, where d and b indicate the number of sluggish
and faulty replicas, respectively. It should be noted that the standard synchronous model is
a special case of the mobile sluggish model with d = 0.

2.3 Overview and Definitions

Sync Hotstuff consists of two sub protocols, namely, the steady state protocol and the view-
change protocol. In the steady state, a stable leader proposes a new entry for the log and
then other replicas vote for the proposal for confirmation. The reign of the leader is called a
view and is identified by a monotonically increasing view number. The leader of each view is
simply selected in a round robin manner. When a leader is lazy to progress or some byzantine
activity is detected, other honest replicas blame the leader and transition into the view-change
protocol where they switch to another view and leader.

Sync Hotstuff uses the blockchain scheme. In the steady state protocol, the leader proposes
a block Bk = (bk, hk−1), where k is a height in the blockchain, bk is a batch of client’s
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requests, and hk−1 is a hash of the predecessor in the blockchain that the block extends, i.e.,
hk−1 = H(Bk−1). The genesis block is defined as ⊥. A block is valid if (i) its predecessor
is valid or ⊥, and (ii) its proposed value meets application-level validity condition and is
consistent with its chain of ancestors. If a block Bk is an ancestor of another Bl (l ≥ k), we
say Bl extends Bk, and if a leader proposes two blocks that do not extend each other, we say
the blocks equivocate each other.

In Sync Hotstuff, a proposal of a block must contain a set of signatures on the predecessor
from a quorum of replicas (i.e., f + 1) from the same view and it is called a certificate. A
certificate for a block B in view v is denoted by Cv(B). All certified blocks are ranked with
first its view number and then its height in the blockchain. During protocol execution, each
replica keeps track of all signatures for all blocks and keeps updating the highest certified
block it knows. Each replica uses the highest certified block as a lock, which is the point that
we use in our force-locking attack.

2.4 Protocol Specifications

In this subsection, we review the specification of each version of the Sync Hotstuff protocol.

2.4.1 The Protocol under the Standard Synchronous Model

Figure 1 shows the steady state protocol under the standard synchronous model (hereafter
denoted by Πstd.steady). The steady state protocol runs in iteration. The leader proposes
a block extending the highest certified block it knows, and the proposal must contain a
certificate. If the leader has been in the steady state, it should extend the previous block
it has proposed in the same view, and if it is the first proposal after the view-change, it
should extend the highest certified block it knows. Each replica, upon receiving a block Bk,
broadcasts a vote for the block if it is the first valid block for the height by the leader and
it extends the highest certified block it knows. After voting for a block Bk, a replica starts
a timer for the height commit-timerk, and after waiting for 2∆ time and no equivocation has
been observed within this time, it commits Bk and all its ancestors. Note that these are all
processed without lock-step and commit is non-blocking, i.e., the next iteration is started
without waiting for the timer and the blocks at each height are processed concurrently.

The main technique of Sync Hotstuff is the waiting for 2∆ before commit. The authors
argue that this ensures the safety informally and also formally in the Theorem 3 in [1] because
of the following reasons. Suppose a replica r commits a block Bk at time t, then it must have
voted for Bk at time t− 2∆ and the vote reached all honest replicas before t−∆. Then, all
honest replicas did not vote for any equivocating blocks before t −∆ because otherwise the
vote would have reached r before t and r could not commit Bk. Since all honest replicas did
not vote for any equivocating blocks before t−∆, they must have voted for Bk by t−∆, and
thus Bk was certified. Moreover, since all honest replica voted for Bk by t − ∆, they must
have not voted for any equivocating blocks after t − ∆. This means that conflicting blocks
are never certified, ensuring safety. However, this argument is incorrect, and we will explain
it in Section 3.2.

Figure 2 shows the view-change protocol (hereafter denoted by Πstd.change). Similar to
other SMR protocols, this protocol is used for preventing a network from being stuck. First,
to prevent a faulty leader from not progressing, honest replicas broadcast blame messages if
less than p blocks are proposed by the leader within (2p+1)∆ time or equivocating proposals
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Πstd.steady� �
Let v be the current view number, L be the leader of the current view, and r be a replica.
Replica r executes the following protocol.

1. Propose: If r = L, broadcast ⟨propose, Bk, v, Cv′(Bk−1))⟩L, where Bk = (bk, hk−1),
bk is a batch of new client requests, v′ ≤ v, and Bk−1 is the highest certified block
L knows.

2. Vote: Upon receiving ⟨propose, Bk, v, Cv′(Bk−1)⟩L, if this is the first valid proposal
for height k and Bk−1 is a highest certified block r knows, then broadcast the
proposal and a vote in the form of ⟨vote, Bk, v⟩ and set commit-timerk to 2∆ and
start counting down.

3. (Non-blocking) Commit: When commit-timerk reaches 0 and no equivocation in
view v has been observed so far, commit Bk and all its ancestors.� �
Figure 1: The steady state protocol under the standard synchronous model

are observed. If a quorum of replicas blames the leader, the replicas quit the current view,
wait for ∆, and then start the next view by sending the highest certified block they know to
the next leader.

Abraham et al. argued that the view-change protocol ensures that “a view-change will
not happen if the current leader is honest” in Theorem 4 in [1]. This property should hold to
ensure the liveness of the network. However, this argument is incorrect, and we will explain
the problem in Section 3.3.

2.4.2 The Protocol under the Mobile Sluggish Model

Figure 3 shows the steady state protocol under the mobile sluggish model (hereafter denoted
by Πslg.steady). The gray colored parts are the same as in the protocol under standard
synchrony. The differences include the following rules: (i) the timer for a block is set after the
following two blocks are proposed, and (ii) a block is committed after a quorum of replicas
waited for 2∆. These marginal rules are for sluggish replicas to safely commit blocks. The first
rule ensures that a replica has Cv(Cv(Bk)), which means that a quorum of replicas already has
this certificate. The assumption f = d+b ensures that all sets of a quorum of replicas include
at least a prompt replica, and thus ensures that at least a prompt replica has certificate. The
second rule ensures in the same way that at least one prompt replica waited for 2∆ after at
least one prompt replica received the certificate and that it did not observe any equivocation
within the waiting time. Therefore, all prompt replicas (thus a quorum of replicas) have
certificate and will never vote for equivocating blocks, and thus conflicting blocks will not
be certified. The difference in the safety argument between this protocol and the protocol
under standard synchrony is that the existence of a certificate of a block is checked before
waiting for 2∆. This point prevents attack on safety, and we use this technique to modify the
protocol for standard synchrony (See Section 4.1 for details).

The view-change protocol (hereafter denoted by Πslg.change) is the same as Πstd.change.
Therefore, the liveness can be violated in the same way.
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Πstd.change� �
Let L and L′ be the leaders of views v and v + 1, respectively. Replica r executes the
following protocol.

1. Blame: If less than p blocks are received from L in (2p+1)∆ time in view v, broad-
cast ⟨blame, v⟩. If a leader L proposes equivocating blocks, broadcast ⟨blame, v⟩ and
the two equivocating blocks.

2. Quit old view: Upon receiving f + 1 ⟨blame, v⟩ messages, broadcast them and
quit view v (abort all commit-timer and stop voting in view v).

3. Status: Wait for ∆ time and enter view v + 1. Upon entering view v + 1, send a
highest certified block to L′ and transition back to steady state.� �
Figure 2: The view-change protocol under the standard synchronous model

2.4.3 The Protocol with Optimistic Responsiveness

Figures 4 and 5 show the steady state protocol and view-change protocol with responsive
mode, respectively (hereafter denoted by Πrsp.steady and Πrsp.change, respectively). Πrsp

achieves optimistic responsiveness, as first introduced in Thunderella [19]. Πrsp uses the same
technique introduced in Thunderella, i.e., 3n/4 votes ensure the absence of equivocating blocks
without synchronous waiting. The certificate of a block containing more than 3n/4 signatures
is called a strong certificate. In the voting phase of the steady state protocol, when a proposal
contains a strong certificate for the predecessor, a replica switches to the responsive mode.
The main techniques include (i) reaching agreement on the switch to the responsive mode,
and (ii) taking over the blocks committed responsively to the next view in the view change.
In the first technique, at least one block must be committed synchronously in the responsive
mode to ensure that a quorum of prompt replicas has switched to the responsive mode and
that a commit in the synchronous mode (i.e., without strong certificate) will never happen in
the view. In the second technique, some modifications to the view-change protocol ensure that
a quorum of replicas gets all certificates of committed blocks before entering the next view.
A replica must have Cv(Cv(blame)) before entering the next view to ensure that at least one
prompt replica quit the view. In addition, the waiting for 2∆ after receiving Cv(Cv(blame))
ensures that a quorum of prompt replicas receives all committed blocks. Suppose a block is
committed at time t and a prompt replica enters the next view before t + ∆, then at least
one replica quit the view before t− 2∆ and thus preventing the commit.

The modification on the view-change protocol ensures that a quorum of replicas receives
all certificates of committed blocks before entering the next view. However, despite this
modification, the liveness can still be violated in a similar manner as in the standard protocol
(see Section 3.3 for details).

3 Attacks

In this section, we present our proposed force-locking attack on Sync Hotstuff. This attack
violates the safety and liveness of Sync Hotstuff. We first introduce force-locking and then
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Πslg.steady� �
Let v be the current view number, replica L be the leader of the current view, and r be
a replica. Replica r executes the following protocol.

1. Propose: If r = L, broadcast ⟨propose, Bk, v, Cv′(Bk−1))⟩L, where Bk = (bk, hk−1),
bk is a batch of new client requests, v′ ≤ v, and Bk−1 is the highest certified block
L knows.

2. Vote: Upon receiving ⟨propose, Bk, v, Cv′(Bk−1)⟩L, if this is the first valid proposal
for height k and Bk−1 is a highest certified block r knows, then broadcast the
proposal and a vote in the form of ⟨vote, Bk, v⟩ and set pre-commit-timerk−2 to 2∆
and start counting down.

3. (Non-blocking) Pre-commit: When pre-commit-timerk reaches 0 and no equiv-
ocation in view v has been observed so far, pre-commit Bk and broadcast
⟨commit, Bk, v⟩.

4. (Non-blocking) Commit: Upon receiving ⟨commit, Bk, v⟩ from f + 1 distinct
replicas with the same v, commit Bk and all its ancestors.� �

Figure 3: The steady state protocol under the mobile sluggish model

describe specific attack scenarios.

3.1 Force-Locking

In a blockchain protocol, each replica or block-proposer selects a path from the genesis block
to a leaf block in the block tree to vote for or extend following a rule, which is often called
the fork choice rule. In some blockchain protocols, a leaf block is selected from a subtree
in the block tree that changes over time. We say that a replica is locked on a block when
it is the root of the subtree. In Sync Hotstuff, a replica is always locked on the highest
certified block it knows, and a newly certified block with a higher rank unlocks the replica
to this block. In every protocol, the lock is determined by the messages received from all
replicas, including faulty replicas. Therefore, a coalition of faulty replicas can intentionally
change a lock or prevent locking by sending or withholding its messages if the protocol does
not prevent such action. In addition, even in the synchronous model, biased message delay
within the assumption can split the lock of each honest replica. Consequently, a protocol
with naively constructed locking rule can lose its safety or liveness. In Sync Hotstuff, an
adversary can split the lock or highest certified block of each honest replica for at most ∆
time by sending the votes of faulty replicas on a certifiable block (i.e., the block was already
voted for by honest replicas and is ready to be certified) to some honest replicas with delay 0
and to others with delay ∆. This scenario is not a problem in the case where a leader steadily
extends its proposal because the highest certified block is its proposal and it would be blamed
for equivocation if it does not extend this block. However, when a view-change happens and
the view of honest replicas on the highest certified block in the previous view is split, the
proposal of the next leader cannot collect votes from some honest replicas even though the
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Πrsp.steady� �
Let v be the current view number, replica L be the leader of the current view, and r be
a replica. Replica r executes the following protocol.

1. Propose: If r = L, broadcast ⟨propose, Bk, v, Cv′(Bk−1))⟩L, where Bk = (bk, hk−1),
bk is a batch of new client requests, v′ ≤ v, and Bk−1 is the highest certified block
L knows.

2. Vote: Upon receiving ⟨propose, Bk, v, Cv′(Bk−1)⟩L, if this is the first valid proposal
for height k and Bk−1 is a highest certified block r knows, then broadcast the
proposal and a vote in the form of ⟨vote, Bk, v⟩. (i) If Cv′(Bk−1) is a strong certificate,
switch to the responsive mode and only vote for blocks with strong certificates for
the rest of this view. (ii) Else, set pre-commit-timerk−2 to 2∆ and start counting
down.

3. (Non-blocking) Pre-commit: (i) If at least one block has been committed in the
responsive mode of this view, pre-commit Bk−2 and broadcast ⟨commit, Bk−2, v⟩.(ii)
When pre-commit-timerk−2 reaches 0, and no equivocation in view v has been ob-
served so far, pre-commit Bk−2 and broadcast ⟨commit, Bk−2, v⟩.

4. (Non-blocking) Commit: Upon receiving ⟨commit, Bk, v⟩ from f + 1 distinct
replicas with the same v, commit Bk and all its ancestors.� �

Figure 4: The steady state protocol with responsive mode

leader cannot be blamed, consequently violating the safety and liveness of the protocol.

3.2 Attack on Safety

We first describe the attack on the safety of Πstd. As described in the previous section, a
replica commits a block after waiting for 2∆ time and if it did not observe any equivocation
within that time. The authors of Sync Hotstuff argued that this ensures the existence of
certificate on the block since all honest replicas will vote for the block if no equivocation
occurred. However, this is not the case when view-change happens and the highest certified
block in the previous view for honest replicas is split and some honest replicas cannot vote for
the proposal that extends a certified block with lower rank. In this case, the block is committed
but not certified and then the blockchain extends the other certified block, violating the safety
of the protocol.

3.2.1 Attack Scenario

We assume that at time t all replicas start the view v and recognize B0 as the highest certified
block. In practice, when the protocol starts, i.e., t = 0, all replicas start the view v = 1 and
recognize the genesis block ⊥ as the highest certified block. We define some notations to
describe the sets of honest and faulty replicas. L1 and L2 denote faulty leaders at views v
and v + 1, respectively. Rf denotes a set of faulty replicas of size f and it includes L1 and
L2. R1 and R2 each denote a set of honest replicas of size (f + 1)/2, and every replica in the
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Πrsp.change� �
Let L and L′ be the leaders of views v and v + 1, respectively. Replica r executes the
following protocol.

1. Blame: If less than p blocks are received from L in (2p+1)∆ time in view v, broad-
cast ⟨blame, v⟩. If a leader L proposes equivocating blocks, broadcast ⟨blame, v⟩ and
the two equivocating blocks.

2. Quit old view: Upon receiving f + 1 ⟨blame, v⟩ messages, broadcast them along
with ⟨blame2, v⟩, and then quit view v (abort all commit-timer and stop voting in
view v).

3. Status: Upon receiving f+1 ⟨blame2, v⟩ messages, wait for 2∆ time and enter view
v+1. Upon entering view v+1, send a highest certified block to L′ and transition
back to steady state.� �

Figure 5: The view-change protocol with responsive mode

same set can communicate with delay 0 or communicate through the network with standard
synchrony if it is in a different set. All faulty replicas as well as the network are controlled
by the adversary. The total number of replicas is n = 2f +1, where f is the number of faulty
replicas controlled by the adversary, and this situation is within the fault assumption in Sync
Hotstuff. We present a specific scenario chronologically where the safety is violated as follows:

• t+ 2.5∆

1. L1 sends ⟨propose, B1, v, Cv−1(B0)⟩ to R1 with delay 0.

2. R1 receives propose from L1 and broadcasts vote1 = ⟨vote, B1, v⟩ with delay ∆.

• t+ 3∆

1. R2 broadcasts blame1 = ⟨blame, v⟩ with delay ∆ since it did not receive p = 1
proposal within 3∆ = (2p+ 1)∆.

2. Rf sends blame2 = ⟨blame, v⟩ to R2 with delay 0, as if it also blames the leader by
timeout.

3. R2 receives more than f + 1 blame messages (blame3 = blame1 ∪ blame2), broad-
casts all the blame messages with delay ∆, and starts waiting for ∆.

• t+ 3.5∆

1. R2 receives vote1 from R1, but it cannot certify B1 since its size is less than f +1.

2. Rf sends vote2 = ⟨vote, B1, v⟩ to R1 with delay 0.

3. R1 receives more than f + 1 votes (vote3 = vote1 ∪ vote2) and then certifies B1.

• t+ 4∆

1. R1 receives more than f+1 blame messages blame3, broadcasts all blame messages,
and starts waiting for ∆.

11



2. R2 has waited for ∆ since it quit the old view, so it starts the next view v + 1
and sends its highest certified block B0 to the next leader L2. Here, R2 does not
recognize B1 as the highest certified block.

3. L2 sends ⟨propose, B′
1, v, Cv−1(B0)⟩ to R2 with delay 0.

4. R2 broadcasts vote4 = ⟨vote, B′
1, v+1⟩ with delay ∆, then it sets commit-timer1 to

2∆ and starts counting down.

• t+ 4.5∆

1. R2 now received more than f +1 votes vote3, and then certifies B1. However, this
certification is too late.

• t+ 5∆

1. R1 has waited for ∆ since it quit the old view, so it starts the next view v+1 and
sends its highest certified block B1 to the next leader L2.

2. R1 receives vote4 but does not vote since B′
1 does not extend from its highest

certified block B1.

• t+ 6∆

1. R2 commits B′
1 since the commit-time1 reached 0 and no equivocation in view

v + 1 was observed.

At t+6∆, R2 commits B′
1 but its highest certified block is B1. Therefore, the blockchain

will extend from B1 conflicting with B′
1 after the next view, and safety will be lost.

3.3 Attack on Liveness

We now describe the attack on liveness. This attack can be applied to all three protocols,
but we first describe the attack on Πstd and Πslg, and later show a small modification for
the attack on the protocol with responsive mode. The attack scheme is almost the same
as the attack on safety, except that this attack prevents honest leaders from continuously
proposing a valid block. Consider the following scenario. The view of honest replicas on the
highest certified block is split in the previous view, but only the next honest leader sees the
old lower certified block while other honest replicas see the newly certified block. The honest
leader proposes extending the old block but it cannot receive a certificate for its proposal
and cannot continue proposing a valid block and be blamed. Although this attack does not
bring a permanent failure on finality, an honest leader should not be blamed to ensure the
liveness of the network, and thus the liveness is somewhat violated. It should also be noted
that this is a violation of validity in the byzantine broadcast formulation, which requires that
an honest leader’s proposal should be committed.

3.3.1 Attack Scenario

We assume that at time t all parties start the view v and recognize B0 as the highest certified
block. L1 and L2 denote the leaders at views v and v + 1, respectively, but in this case L1
is faulty and L2 is honest. Rf denotes a set of faulty replicas of size f , including L1. Rh

denotes a set of honest replicas of size f excluding L2. This situation is also within the fault
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assumption in Sync Hotstuff. Then, we describe a specific scenario chronologically where the
liveness is violated as follows:

• t+ 2.5∆

1. L1 sends ⟨propose, B1, v, Cv−1(B0)⟩ to Rh with delay 0.

2. Rh receives propose from L1 and broadcasts vote1 = ⟨vote, B1, v⟩ with delay ∆.

• t+ 3∆

1. L2 broadcasts blame1 = ⟨blame, v⟩ with delay ∆ since it did not receive p = 1
proposal within 3∆ = (2p+ 1)∆.

2. Rf sends blame2 = ⟨blame, v⟩ to L2 with delay 0, as if it also blames the leader by
timeout.

3. L2 receives more than f+1 blame messages (blame3 = blame1∪blame2), broadcasts
all the blame messages with delay ∆, and starts waiting for ∆.

• t+ 3.5∆

1. Rh receives vote1 from L2, but it cannot certify B1 since its size is less than f +1.

2. Rf sends vote2 = ⟨vote, B1, v⟩ to Rh with delay 0.

3. Rh receives more than f + 1 votes including its vote (vote3 = vote1 ∪ vote2), then
it certifies B1.

• t+ 4∆

1. Rh receives more than f + 1 blame messages blame3, broadcasts all the blame
messages with delay ∆, and starts waiting for ∆.

2. L2 has waited for ∆ since it quit the old view, so it starts the next view v + 1.
Here, L2 does not recognize B1 as the highest certified block.

3. L2 sends ⟨propose, B′
1, v, Cv−1(B0)⟩ to R2 with delay ∆.

• t+ 4.5∆

1. L2 now receives more than f + 1 votes vote3, and then certifies B1. However, this
certification is too late.

• t+ 5∆

1. Rh has waited for ∆ since it quit the old view, so it starts the next view v+1 and
sends its highest certified block B1 to the next leader L2.

2. Rh receives the proposal vote4 ⟨propose, B′
1, v, Cv−1(B0)⟩ but it does not vote since

B′
1 does not extend from their highest certified block B1.

The block B′
1 proposed by L2 does not extend B1, which is the highest certified block in

Rh, and thus Rh does not vote. Therefore, the honest proposal B′
1 cannot collect f +1 votes,

and L2 cannot propose a valid block anymore.
We can apply this attack to the protocol with responsive mode as follows: Rf sends its

votes for B1 to Rh just before L2 starts the next view after waiting for 2∆.
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4 Refinements

In this section, we present some refinements to prevent the force-locking attack and guarantee
the safety and liveness of the protocols. We describe the modified protocols for all models
and formally prove their safety and liveness.

4.1 The Protocol under the Standard Synchronous Model

Figures 6 and 7 show the refined protocols under the standard synchronous model (hereafter
denoted by Π∗

std). The gray colored parts are the same as the original protocol under the
standard synchronous model, i.e., Πstd. The refinements are mainly divided into two parts
corresponding to safety and liveness.

For the safety, a timer for a block is set after a following block is proposed to ensure
that a replica already has a certificate for the block when it sets the timer for that block.
Although this is not enough to ensure that all honest replicas vote for the block (but a quorum
of replicas already voted for the block), the absence of equivocation within 2∆ ensures that
certificates for conflicting blocks are not created in the view. This technique is inspired by
the original protocol for the mobile sluggish model, where the timer for a block is set after
the following two blocks are proposed.

For the liveness, we modify both the steady state protocol and the view-change protocol.
First, the problem in the original protocol is that the next leader cannot collect all locks of
honest replicas and the leader’s proposal cannot be voted for. To address this problem, a
replica submits its current lock (hereafter denoted by lock(r, v) as the submission of replica
r at view v) to the next leader after quitting the current view, and then waits for 2∆ before
entering the next view. This ensures that the next leader can collect all locks of honest replicas
before entering the next view since all honest replicas quit a view within ∆ and waiting for
another ∆ is enough for the next leader to collect all of the submissions. In addition, for
the first proposal after view-change, replicas check if the block extends a certified block with
higher rank than the lock it submitted in the view-change. Since the leader received all the
submissions and an honest leader extends the highest certified block it knows, an honest
leader’s proposal can be voted for by all honest replicas.

4.1.1 Safety and Liveness

We formally prove the safety and liveness of the modified protocols. First, we define additional
notations. Let pred(B) denote the predecessor of a block B, view(B) denote the view where
a block B is proposed, >rank denote the order of blocks in rank, A >rank B denote that A
is higher in rank than B, and H denote a set of all honest replicas, including prompt and
sluggish replicas. As defined in [1], we say that a block is committed directly if an honest
replica commits it if no equivocation is observed within 2∆ after the replica votes, and we say
that a block is committed indirectly if it is a result of directly committing a block extending
the block.

Lemma 1 (Locked Honest). ∀r ∈ H,∀v if lock(r, v − 1) >rank pred(B), then r will not vote
for B in view v.

Proof. If lock(r, v − 1) >rank pred(B), then view(pred(B)) ≤ v − 1 must hold. Thus, by the
second rule of Vote in Figure 6, r will not vote for B.
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Let v be the current view number, L be the leader of the current view, and r be a replica.
Replica r executes the following protocol.

1. Propose: If r = L, broadcast ⟨propose, Bk, v, Cv′(Bk−1))⟩L where Bk = (bk, hk−1),
bk is a batch of new client requests, v′ ≤ v, and Bk−1 is the highest certified block
L knows.

2. Vote: Upon receiving ⟨propose, Bk, v, Cv′(Bk−1)⟩L

(a) If v′ = v, Bk−1 is a highest certified block r knows and no equivocation in view
v has been observed so far, then broadcast a vote in the form of ⟨vote, Bk, v⟩,
set commit-timerk−1 to 2∆, and start counting down.

(b) If v′ < v, Bk−1 is as high as lock(r, v − 1) and no equivocation in view v has
been observed so far, then broadcast a vote in the form of ⟨vote, Bk, v⟩.

3. (Non-blocking) Commit: When commit-timerk reaches 0 and no equivocation in
view v has been observed so far, commit Bk and all its ancestors.� �

Figure 6: The refined steady state protocol under the standard synchronous model

Lemma 2 (Certified without Equivocation). If an honest replica directly commits Bk in view
v, then (i) every honest replica receives Cv(Bk) before it quit view v, and (ii) every honest
replica does not vote for any B equivocating Bk in view v.

Proof. Suppose a replica r directly commits Bk in view v at time t, then r must have voted
for Bk+1 at t− 2∆, and thus all honest replicas have Cv(Bk) at time t−∆. This ensures that
all honest replicas neither quit view v nor detected any equivocation in view v before t−∆,
since otherwise, before t, r must have received more than f + 1 blame messages or detected
an equivocation, either of which would prevent the commit.

Lemma 3. If an honest replica directly commits Bk in view v, then ∀v′ ≥ v, ∀r′ ∈ H (i)
lock(r′, v′) extends Bk and (ii) ∀B (view(B) = v′) if B is certified and B >rank Bk, then B
extends Bk.

Proof. We will prove Lemma 3 through induction on the view number. We first prove it
for the base case (v′ = v). By the second part of Lemma 2, any certified block in view
v does not conflict with Bk, and thus all certified blocks in view v higher than Bk should
extend Bk, which proves the second part. By the first part of Lemma 2, every honest replica
will submit its lock whose rank is higher than or equal to that of Bk, and since all certified
blocks in view v do not conflict with Bk, every honest replica will submit its lock which
extend Bk, which proves the second part. We next prove it for the inductive step. We prove
it by contradiction. For the second part, suppose a certified block B does not extend Bk.
Let Bmin be the ascendant in view v′ + 1 with minimum rank, then view(pred(Bmin)) ≤ v′

must hold. By the inductive hypothesis, view(pred(Bmin)) < v must hold and it implies
∀r′ ∈ H. pred(Bmin) <rank lock(r′, v′). By Lemma 1, Bmin could not collect a vote from an
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Let L and L′ be the leaders of views v and v+1, respectively, and r be a replica. Replica
r executes the following protocol.

1. Blame: If less than p blocks are received from L in (2p+1)∆ time in view v, broad-
cast ⟨blame, v⟩. If a leader L proposes equivocating blocks, r broadcasts ⟨blame, v⟩
and the two equivocating blocks.

2. Quit and Lock: Upon receiving f + 1 ⟨blame, v⟩ messages, broadcast them, quit
view v (abort all commit-timer and stop voting in view v), and send a highest
certified block denoted by lock(r, v) to L′.

3. Warmup: After waiting for 2∆, transition back to steady state.� �
Figure 7: The refined view-change protocol under the standard synchronous model

honest replica, which contradicts that the block is certified. For the first part, suppose in an
honest replica r′′ that B = lock(r′′, v′+1) does not extend Bk, then by the second part which
was already proven, view(B) < v must hold. Since an honest replica submits the highest
certified block it knows, B would not be selected since at least Bk is higher than B, which is
a contradiction.

Lemma 4 (Unique Extensibility). If an honest replica directly commits a block Bk in view
v, then (i) there does not exist a certificate for block B′

k ̸= Bk in the same view, and (ii) all
certified blocks with higher ranks extend Bk.

Proof. By the second part of Lemma 2, B′
k cannot collect a vote from an honest replica, and

thus it will not be certified, which proves the first part. The second part was already proven
in the second part of Lemma 3.

Theorem 1 (Safety). Honest replicas always commit the same block Bk for each height k.

Proof. In [1], this is proven only by the Unique Extensibility Lemma (Lemma 2 in [1]), which
we proved in Lemma 4.

Theorem 2 (Liveness). (i) A view-change will not happen if the current leader is honest, (ii)
a byzantine leader must propose p blocks in (2p+ 1)∆ time to avoid a view-change, and (iii)
if k is the highest height at which some honest replica has committed a block in view v, then
leaders in subsequent views must propose blocks at heights higher than k. (These arguments
are the same as in Theorem 4 in [1]).

Proof. Suppose at time t an honest replica quit the view for the first time in all honest replicas,
then every honest replica quit the view before t+∆ and every lock submitted by an honest
replica is received by the next leader before t+2∆. If the next leader is honest, it proposes a
block extending the highest certified block it knows and does not commit any equivocation.
Then, all honest replicas can vote for the proposal and create a certificate for the proposal.
The maximum lag time of entering the view is ∆, and the maximum time to propose a block
and receive its certificate from honest replicas is the maximum round-trip delay 2∆, and thus
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Let v be the current view number, replica L be the leader of the current view, and r be
a replica. Replica r executes the following protocol.

1. Propose: If r = L, broadcast ⟨propose, Bk, v, Cv′(Bk−1))⟩L, where Bk = (bk, hk−1),
bk is a batch of new client requests, v′ ≤ v, and Bk−1 is the highest certified block
L knows.

2. Vote: Upon receiving ⟨propose, Bk, v, Cv′(Bk−1)⟩L

(a) If v′ = v, Bk−1 is a highest certified block r knows, and no equivocation in view
v has been observed so far, then broadcast a vote in the form of ⟨vote, Bk, v⟩
and if view(Bk−2) = v, set pre-commit-timerk−2 to 2∆ and start counting
down.

(b) If v′ < v and Bk−1 is as high as lock(r, v − 1) and no equivocation in view v
has been observed so far, then broadcast a vote in the form of ⟨vote, Bk, v⟩.

3. (Non-blocking) Pre-commit: When pre-commit-timerk reaches 0 and no equiv-
ocation in view v has been observed so far, pre-commit Bk and broadcast
⟨commit, Bk, v⟩.

4. (Non-blocking) Commit: Upon receiving ⟨commit, Bk, v⟩ from f + 1 distinct
replicas with the same v, commit Bk and all its ancestors.� �
Figure 8: The refined steady state protocol under the mobile sluggish model

an honest leader proposes at least p blocks within (2p + 1)∆ time. Therefore, all honest
replicas cannot blame the leader and view-change will not happen, which proves the first
part. If a faulty replica does not propose p blocks within (2p+ 1)∆, then all honest replicas
blame the leader and view-change happens, which proves the second part. For the last part,
by the second part of Lemma 2, if the leader does not propose a block with a height higher
than k within 3∆, all honest replicas will not vote for the proposal and blame the leader.

4.2 The Protocol under the Mobile Sluggish Model

Figure 8 shows the refined steady state protocol under the mobile sluggish model (hereafter
denoted by Π∗

slg). The prevention of the attack on the liveness is similar to that in the
standard synchronous model. As a minor refinement we additionally describe explicitly that
the pre-commit timer is set only if the block is proposed in the same view. This may be
implicitly included in the original protocol, although it was not mentioned explicitly in [1].
The refined view-change protocol, i.e., Π∗

slg.change, is the same as that under the standard
synchronous model, i.e., Π∗

std.change.
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4.2.1 Safety and Liveness

The safety of Πslg is not violated. However, the proof in [1] relies on the following argument:
“If an honest replica directly commits a block Bl in view v, then f +1 honest replicas vote for
Bl in that view” (the first part of Lemma 6 in [1]). This argument is incorrect as shown in
our proposed attack on the liveness. Moreover, it is not clear that our refinement to prevent
the attack on liveness cannot bring any security holes that can violate the safety of Π∗

slg.
For these reasons, we formally prove the safety of Π∗

slg. On the other hand, liveness of Π∗
slg

is proved only under the standard synchronous model (recall that standard synchrony is a
special case of the mobile sluggish model). Note however that the original protocol Πslg

does not guarantee the liveness even under the standard synchronous model by the attack on
liveness.

Lemma 5 (Certified without Equivocation). If an honest replica directly commits a block Bk

in view v, then there is a quorum of honest replicas R and ∀r ∈ R (i) r receives Cv(Bk) before
it quit view v and (ii) r does not vote for any block B equivocating Bk in view v.

Proof. The proof scheme is almost the same as that of Lemma 6 in [1]. Suppose an honest
replica directly commits a block Bk in view v, then a quorum of replicas (say R0) pre-commits
Bk. Let the earliest pre-commit among all honest replicas in R0 be performed by r at time t.
Then, r must have voted for Bk+2 at t−2∆. This ensures that a quorum of replicas votes for
Bk+1 before t−2∆, and at least one replica in the quorum set is prompt. Therefore, at t−∆,
a quorum of prompt replicas (say R) at the time must have received Cv(Bk). If a replica in
R quits the view before t − ∆ or observes any equivocation, a quorum of blame messages
or equivocating blocks is received by at least a prompt replica in R0 before it commits the
block. This would prevent the commit and proves the first part. Since all replicas in R do
not observe any equivocation before t − ∆, they do not vote for the equivocating blocks in
the same view, which proves the second part.

Lemma 6. If an honest replica directly commits a block Bk in view v, then ∀v′ ≥ v there
exists a quorum of honest replicas R and (i) ∀r ∈ R, lock(r, v′) extends Bk and (ii) for each
certified block B in view v′, if B >rank Bk, then B extends Bk.

Proof. We will prove it through induction on the view number. We first prove it for the
base case (v′ = v). By the second part of Lemma 5, any certified block in view v does not
conflict with Bk, and thus all certified blocks in view v that have height higher than Bk

should extend Bk, which proves the second part. By the first part of Lemma 5, a quorum of
honest replicas receives Cv(Bk) before quitting view v and will submit its lock whose rank is
higher than or equal to that of Bk. Since all certified blocks in view v do not conflict with
Bk, they will submit their locks that extend Bk, which proves the second part. We next
prove it for the inductive step. We prove it by contradiction. For the second part, suppose a
certified block B in view v′+1 does not extend Bk. Let Bmin be the ascendant in view v′+1
with minimum rank, then view(pred(Bmin)) ≤ v′ must hold. By the inductive hypothesis,
view(pred(Bmin)) < v must hold and it implies ∀r′ ∈ R. pred(Bmin) <rank lock(r′, v′) (R
is a quorum of honest replicas that exists by the inductive hypothesis). By Lemma 1 which
is also easily proven for this model, Bmin could not collect votes from replicas in R, which
contradicts that the block is certified. For the first part, suppose in an honest replica r′′ ∈ R
that B = lock(r′′, v′ + 1) does not extend Bk, then by the second part which was already
proven, view(B) < v must hold. Since an honest replica submits the highest certified block
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it knows, B would not be selected because at least Bk is higher than B. By the inductive
hypothesis, ∀r′′ ∈ R, lock(r′′, v′) is higher than Bk, which is a contradiction.

Lemma 7 (Unique Extensibility). If an honest replica directly commits a block Bk in view
v, then (i) there does not exist a certificate for block B′

k ̸= Bk in the same view, and (ii) all
certified blocks with higher ranks extend Bk.

Proof. By the second part of Lemma 5, B′
k cannot collect votes from honest replicas, and

thus it will not be certified, which proves the first part. The second part was already proven
in the second part of Lemma 6.

Theorem 3 (Safety). Honest replicas always commit the same block Bk for each height k.

Proof. This is proven in the same way as in Theorem 1 by the Unique Extensibility Lemma,
which we already proved in Lemma 7.

Theorem 4 (Liveness). Under standard synchrony (i.e., d = 0), (i) a view-change will not
happen if the current leader is honest, (ii) a byzantine leader must propose p blocks in (2p+1)∆
time to avoid a view-change, and (iii) if k is the highest height at which an honest replica has
committed a block in view v, then leaders in subsequent views must propose blocks at heights
higher than k.

Proof. We can easily prove in the same way as for the modified protocol under the standard
synchronous model.

4.3 The Protocol with Optimistic Responsiveness

Figures 9 and 10 show the refined protocol with responsive mode (hereafter denoted by Π∗
rsp).

In the steady state protocol, we added some minor refinements as in Π∗
slg as follows: (i)

prevention of the attack on liveness: for the first proposal after the view-change, a replica
votes if the predecessor is higher than the lock it submitted at the end of the previous view,
and (ii) explicit description: in setting the timer for the block or pre-commit the block, check
that the block is from the same view. Waiting after submitting its lock in the Warmup phase
of the view-change protocol is also a part of the prevention of the attack on liveness. The
main solution is to deal with a responsive commit. In the Lock phase, we added another
waiting for 2∆ after receiving a quorum of blame2 messages. This ensures that when some
honest replicas committed a block directly, its certificate will be received by a quorum of
honest replicas before the replicas submit their locks.

4.3.1 Safety and Liveness

We formally prove the safety. However, the liveness is not guaranteed under minority fault
assumption because an adversary can violate the liveness immediately after switching to
responsive mode by stopping the votes from faulty replicas. This can also be applied to the
original protocol, i.e., Πrsp, and the liveness proof is not complete in [1].

Lemma 8. If an honest replica directly commits a block Bk in view v, then there is a quorum
of honest replicas R and ∀r ∈ R, r receives Cv(Bk) before submitting lock(r, v).
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Let v be the current view number, replica L be the leader of the current view, and r be
a replica. Replica r executes the following protocol.

1. Propose: If r = L, broadcast ⟨propose, Bk, v, Cv′(Bk−1)⟩L, where Bk = (bk, hk−1),
bk is a batch of new client requests, v′ ≤ v, and Bk−1 is the highest certified block
L knows.

2. Vote: Upon receiving ⟨propose, Bk, v, Cv′(Bk−1)⟩L,

(a) If v′ = v and Bk−1 is a highest certified block r knows and no equivocation
in view v has been observed so far, then broadcast a vote in the form of
⟨vote, Bk, v⟩ and (i) If Cv′(Bk−1) is a strong certificate, switch to the responsive
mode and only vote for blocks with strong certificates for the rest of this view;
(ii) Else, if view(Bk−2) = v, then set pre-commit-timerk−2 to 2∆ and start
counting down.

(b) If v′ < v, Bk−1 is as high as lock(r, v − 1) and no equivocation in view v has
been observed so far, then broadcast a vote in the form of ⟨vote, Bk, v⟩.

3. (Non-blocking) Pre-commit: (i) If at least one block has been committed in the
responsive mode of this view, if view(Bk−2) = v, pre-commit Bk−2 and broadcast
⟨commit, Bk−2, v⟩.(ii) When pre-commit-timerk−2 reaches 0 and no equivocation in
view v has been observed so far, pre-commit Bk−2 and broadcast ⟨commit, Bk−2, v⟩.

4. (Non-blocking) Commit: Upon receiving ⟨commit, Bk, v⟩ from f + 1 distinct
replicas with the same v, commit Bk and all its ancestors.� �

Figure 9: The refined steady state protocol with responsive mode

Proof. Suppose an honest replica directly commits a block Bk in view v, then a quorum of
replicas (say R0) pre-commits Bk. Let the earliest pre-commit among all honest replicas in
R0 be performed by r at time t. Then, r must have voted for Bk+2 before t. This ensures
that a quorum of replicas vote for Bk+1 before t, and at least one replica in the quorum set
is prompt. Therefore, at t+∆, a quorum of prompt replicas (say R) at the time must have
received Cv(Bk). Suppose for a contradiction that a replica in R submits its lock before t+∆,
then it receives a quorum of blame2 messages before t −∆. This ensures that a quorum of
replicas quit the view before t − ∆, and prompt replicas at t receive f + 1 blame messages
since at least one replica in the quorum set is prompt. Since at least one replica in R0 (say
r′) is prompt at t, the quorum of blame messages would prevent the pre-commit in r′, which
is a contradiction.

Lemma 9. If an honest replica directly commits a block Bk in view v, then ∀v′ ≥ v there
exists a quorum of honest replicas R and (i) ∀r ∈ R, lock(r′, v′) extends Bk and (ii) for all
certified blocks B in view v, if B >rank Bk, then B extends Bk.

Proof. These are the same arguments in Lemma 6, therefore we only prove it for the responsive
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Let L and L′ be the leaders of views v and v + 1, respectively. Replica r executes the
following protocol.

1. Blame: If less than p blocks are received from L in (2p+1)∆ time in view v, broad-
cast ⟨blame, v⟩. If a leader L proposes equivocating blocks, broadcast ⟨blame, v⟩ and
the two equivocating blocks.

2. Quit old view: Upon receiving f + 1 ⟨blame, v⟩ messages, broadcast them along
with ⟨blame2, v⟩ and quit view v (abort all commit-timer and stop voting and commit
in view v).

3. Lock: Upon receiving f + 1 ⟨blame2, v⟩, wait for 2∆ and send a highest certified
block to L′.

4. Warmup: After waiting for 2∆, enter view v + 1 and transition back to steady
state.� �

Figure 10: The refined view-change protocol with responsive mode

mode. We will prove it through induction on the view number. We prove it for the base case
(v′ = v). First, if Bk is directly committed in the responsive mode, there does not exist a
certificate for any block equivocating Bk, which proves the second part. We prove it in the
same way as in Lemma 8 in [1]. If Bk is directly committed in the responsive mode, there
exists a strong certificate for Bk. Thus, there cannot exist a strong certificate for a block
equivocating Bk, otherwise f +1 = (3n/4+ 1)+ (3n/4+ 1)−n replicas would have voted for
it. At least one ancestor of Bk should be committed synchronously in the responsive mode
and at most d honest replicas (i.e., sluggish replicas) are left behind in the synchronous mode,
which is not enough to create a certificate. The first part is clear by Lemma 8 and the second
part was already proven. The inductive step is almost as same as in the proof of Lemma 6,
thus we skip it here.

Lemma 10 (Unique Extensibility). If an honest replica directly commits a block Bk in view
v, then (i) there does not exist a certificate for block B′

k ̸= Bk in the same view, and (ii) all
certified blocks with higher ranks extend Bk.

Proof. As shown in Lemma 9, any block equivocating Bk cannot collect a quorum of certifi-
cates, this proves the first part. The second part was already proven in the second part of
Lemma 9.

Theorem 5 (Safety). Honest replicas always commit the same block Bk for each height k.

Proof. This is proven in the same as manner as in Theorem 1 by the Unique Extensibility
Lemma, which we proved in Lemma 10.
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5 Conclusion

In this paper, we presented the force-locking attack on Sync Hotstuff. This attack can violate
the safety and liveness of the protocol, which are necessary security properties for a state
machine replication protocol. We also presented the protocols for each model with reason-
able refinements and formally proved their security. Our refinements remove the security
vulnerability in Sync Hotstuff without any performance compromises.

As mentioned in [1], the mobile sluggish model is still far from being applied to an actual
network because an offline replica may not receive all the messages sent before ∆ at the time
it wakes up. Moreover, in the responsive mode, liveness failure can still happen even with our
refinements. These will be investigated in future works.
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