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Abstract. On-line/off-line encryption schemes enable the fast encryp-
tion of a message from a pre-computed coupon. The paradigm was put
forward in the case of digital signatures.
This work introduces a compact public-key additively homomorphic en-
cryption scheme. The scheme is semantically secure under the decisional
composite residuosity (DCR) assumption. Compared to Paillier cryp-
tosystem, it merely requires one or two integer additions in the on-line
phase and no increase in the ciphertext size. This work also introduces
a compact on-line/off-line trapdoor commitment scheme featuring the
same fast on-line phase. Finally, applications to chameleon signatures
are presented.
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1 Introduction

A number of applications can afford slower computations as long as they are not
required to be performed on-line. Most public-key encryption schemes entail the
evaluation of many modular multiplications with a large modulus as part of the
encryption procedure. Furthermore, certain applications like electronic voting or
private data analytics require operating on ciphertexts. Additively homomorphic
encryption enables to directly adding ciphertexts or, more generally, evaluat-
ing linear combinations thereof. This is in contrast with traditional encryption
schemes where data first needs to be decrypted prior to being processed.

On-line/off-line encryption Real-time encryption necessitates the encryption
process to be as fast as possible. This leads to the notion of on-line/off-line
cryptography introduced by Even et al. [10] for digital signatures.

In an on-line/off-line encryption scheme, the encryption process is divided
into two phases. The first phase, performed off-line, is independent of the mes-
sage to be encrypted. Examples include a server pre-computing values at idle
time or a low-end hardware token with pre-computed values stored in memory.
The second phase, performed on-line, takes on input a value pre-computed in
the off-line phase and a message and produces a ciphertext. Only the on-line
phase is required to be fast.



Paillier’s additive encryption The Paillier cryptosystem [17] is a public-key en-
cryption scheme. The public key is RSA-type modulus N = pq where p and
q are two large secret equal-size primes. The message space M is the addi-
tive group Z/NZ. The encryption of a plaintext message m ∈ M is given by

C = (1 + N)m rN mod N2 for some uniformly random integer r
$← [1, N) with

gcd(r,N) = 1.1 Paillier cryptosystem is known to provide indistinguishability of
encryptions (semantic security) under the DCR assumption.

A salient feature of the system resides its additive property: given the encryp-
tion of two plaintext messages m1 and m2, there is an efficient public procedure
providing an encryption of m1+m2 (as an element of the message space). Specif-
ically, letting C1 = (1 +N)m1 r1

N mod N2 and C2 = (1 +N)m2 r2
N mod N2, it

turns out that C3 := C1 C2 ρ
N mod N2 for any ρ ∈ [1, N) with gcd(ρ,N) = 1 is

an encryption of m1 +m2 (mod N).

Trapdoor commitments Commitment schemes can be derived from semantically
secure encryption schemes [11]. A commitment scheme is a cryptographic prim-
itive allowing a user to commit to a chosen value m, with the ability to reveal
the committed value later. The resulting commitment C to m must be such that
it hides the value of m. Further, it should not be possible for the user to exhibit
a value m′ ̸= m that results in the same commitment C.

As the name suggests, a trapdoor commitment scheme [5] is a commitment
scheme with some secret trapdoor. The knowledge of the trapdoor enables open-
ing a commitment C to any chosen value m′. This feature is known as the
“chameleon” property, a term coined in [5]. Non-interactive trapdoor commit-
ment schemes naturally give rise to chameleon hash functions [14,3]. Chameleon
hash functions are hash functions associated with a pair of hashing/trapdoor
keys. Again, the name chameleon refers to the ability for the owner of the trap-
door key to modify the input without changing the output. A useful application
of chameleon hashing is chameleon signatures [14].

Our contributions Additive encryption schemes can easily be turned into efficient
on-line/off-line encryption schemes. Specifically, for the Paillier cryptosystem, a
message m ∈ Z/NZ can be encrypted using an hybrid approach, where the
ciphertext is set as the pair (C1, c2) with

C1 = (1 +N)µ rN mod N2 and c2 = (m+ µ) mod N

for some random mask µ ∈ Z/NZ. Ciphertext C1 is a regular Paillier encryption
that can be pre-computed ahead of time. From (C1, µ), the on-line phase only
involves a modular addition to get the second component c2 of the ciphertext. On
the downside, the resulting ciphertext (C1, c2) is longer than a regular Paillier
ciphertext: 3 log2 N bits instead of 2 log2 N bits.

This paper presents equally efficient Paillier-like constructions but without
increasing the ciphertext size. In order to do so, we introduce a new operator

1 In practice, there is no need to check that gcd(r,N) = 1. This condition is verified
with overwhelming probability, namely with probability 1− 1

N−1−#(Z/NZ)∗ > 1− 1√
N
.



that we call the “Ups” function as its relates, modulo some fixed integer N , the
upper part of an integer to the integer itself. This operator is the heart of our
constructions.

In the Paillier cryptosystem, if (1 + N)m mod N2 is evaluated as 1 + mN ,
we see that the encryption of message m can be obtained as

C = (1 +mN)R mod N2

where R = rN mod N2. Hence, if the value of R is pre-computed, produc-
ing a Paillier’s ciphertext C essentially costs an integer multiplication plus a
multiplication modulo N2. It is useful to note that R is a Paillier encryp-
tion of 0 and that (1 + mN) is a trivial Paillier encryption of m (i.e., using
r = 1). Ciphertext C can therefore be seen as the homomorphic addition of
plaintexts 0 and m. Using the Ups function ΥN , a ciphertext is expressed as
a pair of two integers modulo N . In particular, letting [R]N = R mod N , R
is represented as ([R]N , ΥN (R)) ∈ (Z/NZ)∗ × Z/NZ and (1 + mN) as (1,m).
Interestingly, their homomorphic addition, ([R]N , ΥN (R)) ⊞ (1,m), leads to the
pair ([R]N , ΥN (R) +m) ∈ (Z/NZ)∗×Z/NZ, which represents ciphertext C. We
exploit this property of the Ups function to design an efficient on-line/off-line
homomorphic encryption scheme. The off-line comprises the pre-computation of
coupons of the form ([R]N , ΥN (R)) while the on-line phase just add m (mod N)
to the second component of a fresh coupon to get an encryption of a plaintext
message m.

The on-line/off-line encryption scheme we propose is semantically secure. In
addition, its encryption function induces a trapdoor permutation on (Z/NZ)∗×
Z/NZ given by

π : (Z/NZ)∗ × Z/NZ −→ (Z/NZ)∗ × Z/NZ,

(r,m) 7−→ (u, v) =
(
rN mod N,m+ ΥN (rN mod N2)

)
and comes with an efficiently computable inverse map π−1 : (Z/NZ)∗×Z/NZ→
(Z/NZ)∗×Z/NZ, (u, v) 7→ (r,m) with r = u1/N mod N andm = v−ΥN (rN mod
N2). Abstracting the scheme given in [7, § 6.1], we show how the presence of
such a map π−1 in an homomorphic encryption scheme allows one to get a trap-
door commitment scheme. We adapt this result to our homomorphic encryption
scheme and so obtain a concrete instantiation of an efficient on-line/off-line trap-
door commitment scheme. The resulting scheme inherits the fast on-line phase
of the encryption scheme. Non-interactive versions of the commitment scheme
are applied to design chameleon signatures that are free of key exposure [1,9,2].

Outline of the paper The rest of the paper is organized as follows. The next
section defines the Ups function and studies its arithmetic properties. Section 3
presents an efficient on-line/off-line encryption scheme. It also details its homo-
morphic operations. The security proofs are deferred to Appendix B. A compan-
ion on-line/off-line trapdoor commitment scheme is proposed in Section 4. It is
applied as a building block for secure chameleon signatures. Finally, Section 5
concludes the paper.



2 The “Ups” Function

Throughout this section, we fix a positive integer N .
For a real number r, the floor function ⌊r⌋ returns the greatest integer less

than or equal to r. For example, ⌊3.1415⌋ = 3 and ⌊−3.1415⌋ = −4. For an
integer x, ⌊x/N⌋ denotes the integer division of x by N and x mod N denotes the
remainder of the division of x by N . Clearly, x mod N = x−N · ⌊x/N⌋ ∈ [0, N).
For a rational number a

b with a, b ∈ Z and gcd(b,N) = 1, a
b mod N = a ·

b⋆ mod N where b⋆ is the inverse of b modulo N ; i.e., b⋆ is an integer satisfying b·
b⋆ ≡ 1 (mod N). The integer b⋆ = b−1 mod N can be obtained via the extended
Euclidean algorithm (see e.g. [16, Algorithm 2.107]).

Definition 1. The Ups function w.r.t. N , denoted by ΥN , takes as input an
integer that is co-prime to N and returns a value in Z/NZ; it is given by

ΥN : x 7→ ΥN (x) =
⌊x/N⌋

x
mod N .

Let x ∈ Z with gcd(x,N) = 1. The Ups function satisfies the following
properties:

1. ΥN (x) = ΥN (x mod N2) =
x mod N2

x mod N −1 mod N2

N ;
2. ΥN (−1) = 1;
3. ΥN (x) = 0 if x mod N2 < N ; in particular, ΥN (1) = 0;
4. ΥN (−x) = ΥN (x) + x−1 mod N .

Proof. 1. The first property is a consequence of ⌊x/N⌋ ≡ ⌊(x mod N2)/N⌋ mod
N and x ≡ (x mod N2) (mod N). We so have ΥN (x) = ΥN (x mod N2).
Now write x mod N2 = xl + xhN with 0 ≤ xl, xh < N . Clearly, we have
x mod N2 ≡ xl + xhN ≡ xl[1 + (xh · xl

−1 mod N)N ] ≡ xl[1 + ΥN (x)N ]
(mod N2) and so ΥN (x) = (x · xl

−1 − 1 mod N2)/N .
2. The second property follows from ⌊−1/N⌋ = −1. Hence, ΥN (−1) = −1

−1 mod
N = 1.

3. If x mod N2 < N then x mod N2 = x mod N . From the first property, we

then have ΥN (x) = 0 mod N2

N = 0.
4. Multiplying through by x, the last property boils down to x · ΥN (−x) ≡ x ·

ΥN (x)+1 (mod N), which immediately follows from −⌊−x/N⌋ = ⌊x/N⌋+1.

Remark 1. As alluded in the above proof, a positive integer x < N2, co-prime
to N , can uniquely be put under the form x = xl+xhN with xl = x mod N and
xh = ⌊x/N⌋. For such an integer, the Ups function can equivalently be expressed
as ΥN (x) = xh

xl
mod N .

Proposition 1. Let x, y ∈ Z and co-prime to N . Then

ΥN (x · y) = ΥN (x) + ΥN (y) + ΥN (x · y) mod N

where x = x mod N and y = y mod N .



Proof. Write x mod N2 = xl + xhN with 0 ≤ xl, xh < N and y mod N2 = yl +
yhN with 0 ≤ yl, yh < N . Note that xl = x mod N = x, xh = ⌊(x mod N2)/N⌋,
yl = y mod N = y and yh = ⌊(y mod N2)/N⌋. So, x · y ≡ xlyl + (xlyh +
ylxh)N ≡ (xlyl mod N) +

(
xlyh + ylxh + ⌊xlyl

N ⌋ mod N
)
N (mod N2) and thus

ΥN (x · y) ≡ xlyh+ylxh+⌊ xlyl
N ⌋

xlyl
≡ yh

yl
+ xh

xl
+

⌊ xlyl
N ⌋

xlyl
≡ ΥN (y) + ΥN (x) + ΥN (x · y)

(mod N), noting that x · y = xl · yl = (xlyl mod N) + ⌊xlyl

N ⌋N .

Corollary 1. Let x ∈ Z and co-prime to N . Then ΥN (x−1 mod N2) = ΥN (2 −
x · x⋆) where x⋆ = x−1 mod N .

Proof. Through Hensel lifting, we have x−1 ≡ x⋆(2 − xx⋆) (mod N2); cf. [15,
Lemma 3.1]. Hence, ΥN (x−1 mod N2) = ΥN (x⋆(2 − xx⋆) ≡ ΥN (x⋆) + ΥN (2 −
xx⋆) + ΥN

(
x⋆ · (2 − xx⋆ mod N)

)
≡ 2ΥN (x⋆) + ΥN (2 − xx⋆) ≡ ΥN (2 − xx⋆)

(mod N) since x⋆ < N .

3 On-Line/Off-Line Encryption

3.1 Description

We present an efficient on-line/off-line encryption scheme using the Ups function.
The on-line cost is only of one modular addition or, equivalently, one or two
integer additions. The size of a ciphertext is of 2 log2 N bits.

An on-line/off-line encryption scheme

KeyGen(1κ) Given a security parameter κ, the key generation algorithm
generates two large primes p and q and forms the RSA-type modulus
N = pq. The public key is pk = N and the private key is sk = (p, q).
The message space isM = Z/NZ.

Encpk (m) Let m ∈ M denote the message being encrypted under public
key pk .
Off-line phase

– Pick uniformly at random an integer r
$← [1, N) with

gcd(r,N) = 1 and compute R = rN mod N2;
– Form the coupon (µ, ν) =

(
R mod N,ΥN (R)

)
.

On-line phase
– Let u = µ and compute v = (m+ ν) mod N ;
– Return the ciphertext C = (u, v).

Decsk (C) Given a ciphertext C = (u, v), the corresponding plaintext can
be recovered using private key sk as

m = (v + ΥN (U)) mod N with U = uλ·λ⋆ mod N2

where λ = lcm(p− 1, q − 1) and λ⋆ = λ−1 mod N .



It can be verified that decryption is correct. Indeed, if C = (u, v) denotes
the encryption of a message m—namely, C = (u, v) where u = R mod N and
v = m + ΥN (R) mod N with R = rN mod N2 for some integer r ∈ [1, N) with
gcd(r,N) = 1, then Rλ·λ⋆ ≡ (rλ

⋆

)Nλ ≡ 1 (mod N2) by noting that Nλ is the
exponent of the group (Z/N2Z)∗. Consequently, we get ΥN (Rλ·λ⋆ mod N2) =
ΥN (1) = 0. Further, from R = (R mod N) + ⌊R/N⌋N ≡ u(1 + ΥN (R)N)
(mod N2), we have

0 = ΥN (Rλ·λ⋆ mod N2)

= ΥN
(
uλ·λ⋆(1 + ΥN (R)N)λ·λ

⋆

mod N2
)

= ΥN
(
uλ·λ⋆(1 + ΥN (R)N) mod N2

)
since λλ⋆ ≡ 1 (mod N)

= ΥN (uλ·λ⋆ mod N2) + ΥN
(
1 + ΥN (R)N

)︸ ︷︷ ︸
=

ΥN (R)

1

+ΥN (1 · 1)︸ ︷︷ ︸
=0

by Proposition 1

modulo N . Hence, letting U = uλ·λ⋆ mod N2, we finally obtain 0 ≡ ΥN (U) +
ΥN (R) ≡ ΥN (U) + (v −m) (mod N) ⇐⇒ m = ΥN (U) + v mod N .

Implementation notes Again, in practice, there is no need to check that
gcd(r,N) = 1. Note also that the evaluation of v does not really require a
modular reduction since

(m+ ν) mod N =

{
m+ ν if m+ ν < N ,

m+ ν −N otherwise .

When x ≡ 1 (mod N), we have ΥN (xe) ≡ e · ΥN (x) (mod N) for any expo-
nent e. As a result, the evaluation of ΥN (U) with U = (uλ)λ

⋆

mod N2 can be
carried out efficiently as ΥN (U) = λ⋆ · ΥN (uλ mod N2) mod N . Note also from

the first property of the Ups function that ΥN (x) = (x−1) mod N2

N when x ≡ 1

(mod N); hence, ΥN (uλ mod N2) = (uλ−1) mod N2

N .
Further, decryption can be sped up through Chinese remaindering [16, § 14.5]:

m = CRT(mp,mq) where mp = v + Υp(U mod p2) mod p and mq = v +
Υp(U mod q2) mod q.

Variants The above cryptosystem is subject to numerous variants. For ex-
ample, one could define a ciphertext as a pair (u⋆, v) with u⋆ = R−1 mod N
and v = (m + ΥN (R)) mod N , where R = rN mod N2. Note that ΥN (R) =⌊
R mod N2

N

⌋
u⋆ mod N .

3.2 Security Analysis

The security immediately follows from the security of Paillier cryptosystem.
Indeed, a ciphertext (u, v) as per Section 3.1 can be converted into a regular
Paillier ciphertext C as

C = u(1 + vN) mod N2 .



Conversely, a regular Paillier ciphertext C can be converted into an “on-line/off-
line” ciphertext (u, v) where u = C mod N and v = L(C/u mod N2) mod N
with L(x) = x−1

N .

For completeness, security proofs are provided in Appendix B.

3.3 Homomorphic Operations

Addition The cryptosystem presented in Section 3.1 is additively homomor-
phic. That means that if C1 and C2 denote the respective encryptions of any
two messages m1 and m2 inM, there exists a publicly known operation, say ⊞,
such that the decryption algorithm returns message m1 +m2 (as an element of
M) on input ciphertext C1 ⊞ C2.

Specifically, the ‘addition’ of two ciphertexts, C1 = (u1, v1) and C2 = (u2, v2),
is given by C3 := C1 ⊞ C2 = (u3, v3) with

u3 = u1u2 mod N and v3 = v1 + v2 + ΥN (u1 · u2) mod N . (1)

This directly follows from Proposition 1. Consider two plaintexts m1,m2 ∈
M. For i ∈ {1, 2}, write Ri = ri

N mod N2 with ri
$← [1, N), ui = Ri mod N ,

νi = ΥN (Ri), and vi = mi+νi mod N . Then, defining r3 = r1r2 mod N and R3 =
r3

N mod N2, we get R3 ≡ R1R2 ≡ u1u2 (mod N) and ΥN (R3) ≡ ΥN (R1R2 mod
N2) ≡ ΥN (R1) + ΥN (R2) + ΥN

(
(R1 mod N)(R2 mod N)

)
≡ ν1 + ν2 + ΥN (u1u2)

(mod N). As a result, u3 := R3 mod N and v3 := m3 + ν3 mod N with ν3 :=
ΥN (R3) as per Equation (1) yield the encryption of message m3 ≡ v3 − ν3 =
(m1 + ν1) + (m2 + ν2) + ΥN (u1u2)− ΥN (R3) ≡ m1 +m2 (mod N).

Negation and subtraction In certain applications, when working over en-
crypted data, it is sometimes required to include negative numbers. When the
message space M is (isomorphic to) the additive group Z/NZ, it is customary
to view the elements of Z/NZ as belonging to the set {−⌊N/2⌋, . . . , ⌈N/2⌉ − 1}
in order to keep track of the sign. For the message space M = {0, . . . , N − 1},
non-negative messages are represented by elements in {0, . . . , ⌈N/2⌉ − 1} while
negative messages by elements in {⌈N/2⌉, . . . , N − 1}. So, the additive inverse
of a message m ∈M is given by (−m mod N) = N −m.

An application of the decryption algorithm to the ciphertext (1, 0) produces
plaintext 0 + ΥN (1) = 0. In other words, (1, 0) corresponds to the encryption 0.
Solving Equation (1) for (u2, v2) with (u3, v3) = (1, 0) leads to u2 = u1

−1 mod N
and v2 = −v1 − ΥN

(
u1 · (u1

−1 mod N)
)
mod N . Therefore, the ‘negation’ of a

ciphertext C = (u, v), denoted by ⊟C = (u⋆, v⋆), can be obtained as

u⋆ = u−1 mod N and v⋆ = −v − ΥN (u · u⋆) mod N . (2)

The negation operation gives rise to the ‘subtraction’ of ciphertexts. Given
two ciphertexts C1 = (u1, v1) and C2 = (u2, v2), their subtraction is defined as



C4 := C1 ⊟ C2 = C1 ⊞ (⊟C2) = (u4, v4) with

u4 = u1u2
⋆ mod N and

v4 = v1 − v2 − ΥN (u2 · u2
⋆) + ΥN (u1 · u2

⋆) mod N (3)

where u2
⋆ = u2

−1 mod N .

Multiplication by a constant Yet another useful operation is the multiplica-
tion by a constant. Let C = (u, v) be the encryption of a message m ∈M. Then,
for a natural constant k ∈ [0, N), the encryption of mk := k ·m (mod N) ∈ M
is given by Ck = (uk, vk) := k ⊡ C = C ⊞ C ⊞ · · ·⊞ C (k times) with

uk = uk mod N and vk = kv + ΥN (uk mod N2) mod N . (4)

This can be shown by induction. For k = 0, we have m0 = 0 and Equa-
tion (4) yields u0 = 1 and v0 = 0 · v + ΥN (1) mod N = 0. Clearly, (u0, v0) =
(1, 0) is a valid encryption for message m0 = 0. Now suppose that Equa-
tion (4) is valid for k; we have to prove that it remains valid for k + 1. Ap-
plying Equation (1) with C1 = (u1, v1) being the encryption of message m and
Ck = (uk, vk) that of message mk, we get the encryption Ck+1 = (uk+1, vk+1)
of message mk+1 with uk+1 ≡ u1uk ≡ uuk ≡ uk+1 (mod N) and vk+1 ≡
v1 + vk + ΥN (u1uk) ≡ v + kv + ΥN (uk mod N2) + ΥN (u(uk mod N)) ≡ (k +
1)v + ΥN (uk+1 mod N2) (mod N). The latter congruence follows from Propo-
sition 1 by noting that ΥN (uk+1 mod N2) ≡ ΥN

(
(u mod N2)(uk mod N2)

)
≡

ΥN (u mod N2)+ΥN (uk mod N2)+ΥN ((u mod N)(uk mod N)) ≡ 0+ΥN (uk mod
N2) + ΥN

(
u(uk mod N)

)
(mod N).

Remark 2. Since −1 ≡ N − 1 (mod N), Equation (4) yields an alternative way
to get the negation of a ciphertext. If C = (u, v) then

(
uN−1 mod N,−v +

ΥN (uN−1 mod N2) mod N
)
is also a valid expression for ⊟C.

Re-randomization The additive homomorphism induced by ⊞ enables the re-
randomization of a ciphertext. This can be done by adding the encryption of 0
to a ciphertext. Specifically, if C = (u, v) is the encryption of a message m, then
C∗ = (u∗, v∗) with

u∗ = uϱ mod N and v∗ = v + ΥN (ϱ) + ΥN
(
u · (ϱ mod N)

)
mod N

where ϱ = ρN mod N2 for some ρ
$← [1, N), is a randomized ciphertext which

decrypts to the same message m.

This re-randomization step is important and must be applied to provide
indistinguishability of encryptions.



4 Trapdoor Commitments

4.1 Generic Construction

Formally, a trapdoor commitment scheme consists of a tuple of three polynomial-
time algorithms, (KeyGen,Com,Open):

Key generation The key generation algorithm KeyGen is a probabilistic algo-
rithm that takes on input a security parameter κ and outputs a pair of public

and private key: (pk , sk)
$← KeyGen(1κ).

Commitment LetM and R denote the “message” space and the randomness
space, respectively. On input a value m ∈M, the commitment function Com

draws at random ρ
$← R, computes commitment C using public key pk , and

returns C. We write C ← Compk (m; ρ).
Opening The opening function Open takes on input a commitment C and a

value m ∈M. It returns a value ρ′ ∈ R using private key sk (matching pk).
We write ρ′ ← Opensk (C,m).

Correctness requires that for all (pk , sk)
$← KeyGen(1κ),

Compk (m; ρ′) = C

for any value m ∈M, any commitment thereto C ← Compk (m; ρ) with ρ
$← R,

and ρ′ ← Opensk (C,m). For security, we need the following properties:

1. Hiding property: For all probabilistic polynomial adversaries A,∣∣∣∣∣Pr
[
b′ = b

∣∣∣ (pk , sk) $← KeyGen(1κ); (m0,m1) ∈M2 ← A(pk);
b

$← {0, 1}; ρ $← R;C∗ ← Compk (mb; ρ); b
′ ← A(pk , C∗)

]
− 1

2

∣∣∣∣∣
is negligible in κ;

2. Binding property: For all probabilistic polynomial adversaries A,

Pr

[
Compk (m0; ρ0) = Compk (m1; ρ1) ∧m0 ̸= m1

∣∣∣
(pk , sk)

$← KeyGen(1κ);
(m0, ρ0), (m1, ρ1) ∈M×R ← A(pk)

]
is negligible in κ.

An abstract scheme Let (KeyGen,Enc,Dec) be an homomorphic encryption
scheme with recoverable randomness.2 We assume that the message space is an
additive groupMo

∼= Z/NZ and letMo
∗ denote the set of invertible elements;

the randomness space is denoted by Ro. Let (pko, sko)
$← KeyGen(1κ). In order

2 That is, where the randomness used during encryption can be recovered together
with the message by the decryption algorithm.



to capture the probabilistic nature of the encryption, we explicitly include the
randomness in the encryption algorithm and write C ← Encpko

(m, r) for the
encryption of m ∈ Mo with randomness r ∈ Ro. Also, we suppose that the
decryption algorithm returns both the plaintext and the used randomness; we
write (m, r)← Decsko

(C). We use ⊞, ⊟ and ⊡ for operations on ciphertexts; see
Section 3.3.

A trapdoor commitment scheme (KeyGen,Com,Open) can be obtained as
follows.

KeyGen(1κ) 1. Run KeyGen(1κ) and obtain (pko, sko)
$← KeyGen(1κ);

2. Draw µo
$←Mo

∗ and ro
$← Ro, and compute Co ← Encpko

(µo, ro);
3. Output pk = (pko, Co) and sk = (sko, µo).
The message space isM :=Mo and the randomness space is R := Ro×Mo.

Compk (m; (r, s)) Given messagem ∈M and randomness ρ := (r, s)
$← R, return

C ← Encpko
(m, r)⊞ (s⊡ Co) .

Open(C,m) 1. Compute (m′, ·)← Decsko
(C) and s′ ← (m′ −m)µo

−1 (∈M);
2. Compute C ′ ← C ⊟ (s′ ⊡ Co) and (·, r′)← Decsko

(C ′);
3. Return ρ′ = (r′, s′).

It can be verified that the scheme is correct, namely that the value ρ′ =
(r′, s′) ← Open(C,m) is accepting w.r.t. commitment C and message m ∈ M.
We need to show that if C ← Compk (m; (r, s)) = Encpko

(m, r) ⊞ (s ⊡ Co)
then (r′, s′) = (r, s). This follows from the fact that the encryption function
Encpko

: R → R (with R = Ro × Mo) is one-to-one. Indeed, we have C =

Encpko
(m, r) ⊞ (s ⊡ Co) = Encpko

(m + s · µo, r
′′) for some r′′ ∈ Ro. Hence,

letting m′ := m + s · µo, we get s′ ← (m′ − m)µo
−1 = s. In turn, letting

C ′ := C ⊟ (s′ ⊡ Co) = Encpko
(m′′, r′) for some m′′ ∈ Mo, we get C ′ =

C ⊟ (s′ ⊡ Co) = C ⊟ (s⊡ Co) = Encpko
(m, r) and thus r′ ← Decsko(C

′)[2] = r.

Regarding the security, the scheme is perfectly hiding. Indeed, the sole in-
formation an adversary A can get on random bit b in the security game (cf.

Appendix B) is from C∗ ← Encpko
(mb, r)⊞ (s⊡ Co) where (r, s)

$← R. But C∗

is an encryption of m∗ := mb + s · µo and m∗ is uniformly distributed over M
since s

$← M. So the best A can do is to return at random b′ ∈ {0, 1} as its
guess for the value of b.

The scheme is also binding under the assumption that the encryption scheme
Enc is one-way. By contradiction, suppose that there exists an efficient algo-

rithm A that, on input pk = (pko, Co) where Co ← Encpko
(µo, ro) with ro

$←
Ro, can find two colluding pairs (m0, ρ0), (m1, ρ1) ∈ M × R with m0 ̸= m1,
where ρ0 = (r0, s0) and ρ1 = (r1, s1). This means that Compk (m0; (r0, s0)) =
Compk (m1; (r1, s1)) ⇐⇒ Encpko

(m0, r0)⊞(s0⊡Co) = Encpko
(m1, r1)⊞(s1⊡Co)

with Co = Encpko
(µo, ro). As a consequence, since Enc is one-to-one, we must

have m0 + sµo = m1 + s1µo ⇐⇒ (s0 − s1)µo = m1 − m0 (as elements in
Mo) and thus A can recover µo—remember that m0 ̸= m1 and so s0 ̸= s1 since
µo ∈Mo

∗.



4.2 On-line/Off-line Trapdoor Commitments

Specializing the previous abstract scheme to the encryption of Section 3.1 yields
a trapdoor commitment scheme that requires only one modular addition (or,
equivalently, one or two integer additions) in the on-line-phase. This has to be
compared with state-of-the-art on-line/off-line trapdoor commitment schemes
of [7] and [6] that involve modular multiplications.

A trapdoor commitment scheme

KeyGen(1κ) Given a security parameter κ, the key generation algorithm
generates two large primes p and q and forms the RSA-type modulus
N = pq. The message space is M = {0, 1, 2, . . . , N − 1} and the
randomness space is R = M∗ × M. The algorithm also computes

Ro = ro
N mod N2 for some ro

$← M∗ and sets uo = Ro mod N
and vo = (µo + ΥN (Ro)) mod N with µo

$← M∗. The public key is
pk = (N, uo, vo) and the private key is sk = (p, q, µo).

Compk (m; (r, s)) Let m ∈ M denote the message being committed to
under public key pk .
Off-line phase

– Pick uniformly at random (r, s)
$← R and compute W =

uo
s rN mod N2;

– Form the coupon (µ, ν) as (µ, ν) =
(
W mod N, (ΥN (W ) +

s vo) mod N
)
.

On-line phase
– Let u = µ and compute v = (m+ ν) mod N ;
– Return the commitment C = (u, v).

Opensk (C,m) A commitment C = (u, v) to a message m ∈ M can be
open using private key sk by letting U = uλ·λ⋆ mod N2 and returning
the pair (r′, s′) satisfying

s′ =
v + ΥN (U)−m

µo
mod N and r′ =

(
uuo

−s′
)N⋆

mod N

where λ := λ(N) = lcm(p − 1, q − 1), λ⋆ = λ−1 mod N , and N⋆ =
N−1 mod λ.

Variants Again, many variants are possible. For example, the private key could
include µo

−1 mod N (instead of µo) to avoid dividing by µo.

4.3 Chameleon Signatures

Regular digital signatures offer non-repudiation in addition to authenticity. This
additional property is sometimes undesired. Chameleon signatures are recipient-



specific: the signature’s recipient can authenticate a signed message but has no
way to convince a third party that the message originated from the signer.

The construction is fairly simple. If (pkR, skR) denote the recipient’s key pair
for a non-interactive trapdoor commitment scheme (KeyGen,Com,Open), then
to chameleon-sign a message m ∈M, the signer

– chooses ρ
$← R;

– forms the “augmented message” m̂ = G
(
CompkR

(m; ρ), pkR

)
where G is a

collision-resistant hash function;3 and
– computes the signature on m̂.

Clearly, the so-obtained signature is not transferable to a third party since the
recipient is able with private key skR to find randomness ρ′ ∈ R for any chosen
message m′ ∈ M such that m̂ =

(
CompkR

(m′; ρ′), pkR

)
. In other words, for ev-

eryone but the recipient, the signature could be the signature on any messagem′.

Key-exposure freeness There is a subtle issue with chameleon signatures: key
exposure. As shown in the proof of the binding property (cf. Section 4.1), a
collision forgery results in the signer recovering the value of µo from two colliding
pairs (r0, s0) and (r1, s1), respectively committing to two distinct messages m0

and m1, as µo = (m1 −m0)/(s0 − s1).

Remark 3. With the scheme of Section 4.2, the signer is even able to recover
the randomness that was used to encrypt µo. Since (r0, s0) and (r1, s1) are
colliding, we have uo

s0r0
N ≡ uo

s1r1
N (mod N) ⇐⇒ uo

s0−s1 ≡ (r1/r0)
N

(mod N). An application of the extended Euclidean algorithm to (s0 − s1, N)
gives two integers α and β such that α(s0 − s1) + βN = gcd(s0 − s1, N) = 1.

As a consequence, we get uo ≡ uo
α(s0−s1)+βN ≡

(
(r1/r0)

αuo
β
)N

(mod N) and
thus ro = (r1/r0)

αuo
β mod N . Now, using ro, the signer is able to compute

chosen collisions and can therefore deny other signatures given to the recip-
ient. Indeed, given (m, r, s), if CompkR

(m; (r, s)) = C, then for any chosen
message m′, CompkR

(m′; (r′, s′) = C by letting s′ := s + µo
−1(m − m′) and

r′ := ro
s−s′r mod N .

In order to address this limitation, we make µo dependent on the transaction,
say τ , in chameleon signatures by

1. appending a “label” ℓ := ℓ(τ) in the augmented message; i.e.,

m̂ = G
(
CompkR

(m; (r, s)), pkR, ℓ(τ)
)
;

2. defining (uo, vo) as (uo, vo) :=
(
uo(τ), vo(τ)

)
= H

(
ℓ(τ)

)
where H is a cryp-

tographic hash function mapping to (Z/NZ)∗ ×Z/NZ, viewed as a random
oracle [4].

3 As noted in [14, § 4.2], it is important to append pkR (along with a description
of the chameleon hash function Com) in the evaluation of augmented message m̂.
Otherwise, the signer or the recipient could claim that the chameleon hash was
generated under a different hash function.



The corresponding value for µo is therefore implicitly defined as

µo := µo(τ) = vo(τ)− ΥN
(
Ro(τ)

)
with Ro(τ) = ro(τ)

N
mod N2 where ro(τ) = uo(τ)

1/N mod N . The label can be
seen as a unique transaction identifier.

The property of key-exposure freeness is easily verified. If the signer were able
to find a collision for the target transaction τ∗ with label ℓ(τ∗) then, similarly
to Remark 3, she could recover ro(τ

∗) = uo(τ
∗)1/N mod N ; that is, an N th root

modulo N . This means inverting the RSA function with exponent N . Note also
the public-key components

{
(uo(τ), vo(τ))

}
τ
are uniformly distributed.

Finally, we observe that using an on-line/off-line scheme (e.g., [13]) for the
signature step leads to an on-line/off-line chameleon signature scheme.

5 Conclusion

In this paper, we have proposed an efficient on-line/off-line DCR-based homo-
morphic encryption scheme and companion trapdoor commitment scheme. Both
schemes just require one or two integer additions in their on-line phase. The on-
line efficiency makes the proposals particularly well suited to time-constrained
applications or to low-end devices that do not have much computational re-
sources.

A Public-Key Encryption

A public-key encryption scheme (see e.g. [16, Chapter 8]) is a tuple of three
polynomial-time algorithms, (KeyGen,Enc,Dec):

Key generation The key generation algorithm KeyGen is a probabilistic algo-
rithm that takes on input a security parameter κ and outputs a pair of public

and private key: (pk , sk)
$← KeyGen(1κ).

Encryption LetM denote the message space. The encryption algorithm Enc is
a randomized algorithm that takes on input a public key pk and a plaintext
m ∈M, and returns a ciphertext C. We write c← Encpk (m).

Decryption The decryption algorithm Dec takes on input secret key sk (match-
ing pk) and ciphertext C. It returns the corresponding plaintext m or a
special symbol ⊥ indicating that the ciphertext is invalid. We write m ←
Decsk (C) if C is a valid ciphertext and ⊥ ← Decsk (C) if it is not.

It is required that for all (pk , sk)
$← KeyGen(1κ), Decsk

(
Encpk (m)

)
= m for

any message m ∈M.



B Security Proofs

B.1 One-Wayness

One-wayness is the minimal security requirement an encryption scheme must
meet: An adversary should not be able to recover the plaintext given its encryp-
tion.

The cryptosystem of Section 3.1 fulfills this requirement under the Hensel
Lifting assumption [8].

Assumption 1 (Hensel Lifting). Let κ be a security parameter. Let also
RSAgen(1κ) be a probabilistic polynomial-time algorithm that generates two equal-
size primes p and q. The Composite Residuosity assumption conjectures that for
all probabilistic polynomial-time algorithms B,

Pr
[
B(N, y) = xN mod N2 | (p, q) $← RSAgen(1κ);N ← pq;

x
$← (Z/NZ)∗; y ← xN mod N

]
is negligible in κ.

The proof is by reduction. We assume that there exists an adversaryA against
the one-wayness property of the scheme. We will use this adversary to break the
Hensel Lifting assumption. Consider the following algorithm B receiving as an

input a challenge (N̂ , ŷ) where N̂
$← RSAgen(1κ) and ŷ = x̂N mod N with

x̂
$← (Z/NZ)∗:

1. B sets N = N̂ and defines pk = N . It also sets u = ŷ, draws v
$←

{0, 1, . . . , N − 1}, and lets C = (u, v). It gives public key pk and challenge
ciphertext C to A.

2. A returns a plaintext m—remark here that all ciphertexts are valid.
3. From the received m, B outputs Y := u+Nu(v −m) mod N2.

Observe that u = x̂N mod N and, if m = Decsk (C), that v −m ≡ ΥN (x̂N mod

N2) (mod N). As a result, we have Y ≡ (x̂N mod N) + N
⌊
x̂N mod N2

N

⌋
≡ x̂N

(mod N2).

In turn, as shown in [8, Theorem 2], we get that the one-wayness of the
cryptosystem holds under the Computational Composite Residuosity (CCR) as-
sumption.

Assumption 2 (Computational Composite Residuosity [17]). Let κ be
a security parameter and let RSAgen(1κ) be a probabilistic polynomial-time al-
gorithm that generates two equal-size primes p and q. The CCR assumption
conjectures that for all probabilistic polynomial-time algorithms B,

Pr

B(N, y, g) = c

∣∣∣∣∣
(p, q)

$← RSAgen(1κ);N ← pq;

g
$← (Z/N2Z)∗ s.t. ord(g) ∝ N ; c

$← {0, 1, . . . , N − 1};
x

$← (Z/N2Z)∗; y ← gcxN mod N2


is negligible in κ.



B.2 Semantic Security

We now show that the cryptosystem of Section 3.1 is semantically secure [12]
under the Decisional Composite Residuosity (DCR) assumption.

Assumption 3 (Decisional Composite Residuosity [17]). Let κ be a secu-
rity parameter and let RSAgen(1κ) be a probabilistic polynomial-time algorithm
that generates two equal-size primes p and q. Consider the distributions dist0(κ)
and dist1(κ) given by

dist0(κ) =
{
(N,R) | N ← pq with (p, q)

$← RSAgen(1κ) ∧R
$← (Z/N2Z)∗

}
and

dist1(κ) =
{
(N,R) | N ← pq with (p, q)

$← RSAgen(1κ) ∧

R← rN mod N2 with r
$← (Z/N2Z)∗

}
.

The DCR assumption conjectures that for all probabilistic polynomial-time algo-
rithms B, the function∣∣∣Pr[B(N,R) = 1 | (N,R)

$← dist0(κ)
]
− Pr

[
B(N,R) = 1 | (N,R)

$← dist1(κ)
]∣∣∣

is negligible in κ.

The semantic security game between a challenger B and an adversary A
proceeds as follows. The challenger is given a DCR challenge (N,R)

$← distβ(κ)

with β
$← {0, 1}. Its goal is to tell if β = 0 or β = 1. For this purpose, B has

access to adversary A. The advantage of A in breaking the semantic security of
the cryptosystem (i.e., to correctly recover b) is denoted by advIND-CPA

A (κ). We
need to show that this advantage is negligible.

Suppose that B runs as follows:

1. B sets the public key pk = N and gives it to A.
2. LetM = {0, . . . , N −1}. A selects a pair of equal-length messages m0,m1 ∈
M, m0 ̸= m1.

3. B chooses at random b
$← {0, 1} and returns to A the challenge ciphertext

C∗ :=
(
R mod N, (mb + ΥN (R)) mod N

)
as the encryption of mb.

4. A returns its guess b′ ∈ {0, 1} that C∗ is the encryption of mb′ .
5. B outputs 1 if b′ = b, and 0 otherwise.

There are two cases to consider:

Case I: (N,R) ∈ dist0(κ). In this case, R is uniform over (Z/N2Z)∗. As a con-
sequence, u∗ := R mod N is a uniformly random value in (Z/NZ)∗ and
v∗ := (mb + ΥN (R)) mod N is a uniformly random value in Z/NZ since
ΥN (R) is uniform over Z/NZ. Message mb is therefore completely hidden
from the view of A. Hence, we get Pr[B(N,R) = 1] = 1

2 .



Case II: (N,R) ∈ dist1(κ). In this case, B perfectly emulates the semantic se-
curity game. Indeed, we have R = rN mod N2 with r ← (Z/N2Z)∗, which is
equivalent to R = rN mod N2 where r := r mod N satisfies r ∈ [1, N) and
gcd(r,N) = 1. We so get∣∣∣Pr[B(N,R) = 1]− 1

2

∣∣∣ = ∣∣∣Pr[b′ = b]− 1
2

∣∣∣ = advIND-CPA
A (κ) .

Under the DCR assumption, we know that B cannot distinguish dist0(κ) from
dist1(κ)—with non-negligible probability. Combining the above two cases, we so
deduce that

advIND-CPA
A (κ) =

∣∣∣Pr[B(N,R) = 1 | (N,R)
$← dist1(κ)

]
− 1

2

∣∣∣
=

∣∣∣(Pr[B(N,R) = 1 | (N,R)
$← dist1(κ)

]
− 1

2

)
−

( =0 (Case I)︷ ︸︸ ︷
Pr

[
B(N,R) = 1 | (N,R)

$← dist0(κ)
]
− 1

2

)∣∣∣
=

∣∣∣Pr[B(N,R) = 1 | (N,R)
$← dist0(κ)

]
−

Pr
[
B(N,R) = 1 | (N,R)

$← dist1(κ)
]∣∣∣

= negl(κ) .
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